[1] Wassie, S. B. (2020). Natural resource degradation tendencies in Ethiopia: a review. Environmental Systems Research, 9(1), 1–29.
[2] Duan, Z. P., Jiang, S. Y., Su, H. M., Zhu, X. Y., Zou, T., & Cheng, X. Y. (2021a). Geochronological and geochemical investigations of the granites from the giant Shihuiyao Rb-(Nb-Ta-Be-Li) deposit, Inner Mongolia: Implications for magma source, magmatic evolution, and rare metal mineralization. Lithos, 400–401(April), 106415.
[3] Khan, J., Yao, H. Z., Zhao, J. H., Tahir, A., Chen, K. X., Wang, J. X., Song, F., Xu, J. Y., & Shah, I. (2024). Geochronology, geochemistry, and tectonic setting of the Neoproterozoic magmatic rocks in Pan-African basement, West Ethiopia. Ore Geology Reviews, 164, 105858.
[4] Bukhari, S. A. A., Basharat, M., Janjuhah, H. T., Mughal, M. S., Goher, A., Kontakiotis, G., & Vasilatos, C. (2023). Petrography and Geochemistry of Gahirat Marble in Relation to Geotechnical Investigation: Implications for Dimension Stone, Chitral, Northwest Pakistan. Applied Sciences (Switzerland), 13(3).
[5] Hailemariam, Y. K., Fissha, Y., & Gebretsadik, A. (2020). Determining the Recovery Rate of Dichinama Marble (Lidge Mariam) Quarry Site At Northwestern Zone, Tigrai, Ethiopia. International Journal of Engineering Applied Sciences and Technology, 5(5), 166–183.
[6] Seelow, A. (2017). Exploring Natural Stone and Building a National Identity: The Geological Exploration of Natural Stone Deposits in the Nordic Countries and the Development of a National-Romantic Architecture. Arts, 6(4), 6.
[7] Nasuti, A., & Roberts, D. (2023). Using geophysics to follow and model the Precambrian basement terranes beneath the Caledonian nappes in Finnmark, northern Norway: A case study. Precambrian Research, 384, 106934.
[8] Asefa, M., Cao, M., He, Y., Mekonnen, E., Song, X., & Yang, J. (2020). Ethiopian vegetation types, climate and topography. Plant Diversity, 42(4), 302–311.
[9] Walle, H., Zewde, S., & Heldal, T. O. M. (2000). Building stone of central and southern Ethiopia : deposits and resource potential. Building, 175–182.
[10] Samarakoon, K. G. A. U., Chaminda, S. P., Jayawardena, C. L., Dassanayake, A. B. N., Kondage, Y. S., & Kannangara, K. A. T. T. (2023). A Review of Dimension Stone Extraction Methods. Mining, 3(3), 516–531.
[11] Revuelta, M. B. (2021). Chapter 6: Cement. In Construction Materials: Geology, Production and Applications.
[12] Macedo, D., Mori Junior, R., & Pimentel Mizusaki, A. M. (2017). Sustainability strategies for dimension stones industry based on Northwest region of Espírito Santo State, Brazil. Resources Policy, 52, 207–216.
[13] Abebe, A. H., & Gatisso, M. M. (2023). The role of indigenous knowledge regarding the history and building of the Kawo/King Amado Kella defensive wall in Wolaita, Ethiopia, including its significance and intended use. Heliyon, 9(11), e20990.
[14] Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L. F., Wesolowski, A., & Metcalf, C. J. E. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193–205.
[15] Okada, K. (2021). A Historical Overview of the Past Three Decades of Mineral Exploration Technology. Natural Resources Research, 30(4), 2839–2860.
[16] Abbate, E., Bruni, P., & Sagri, M. (2015). Geology of Ethiopia: A Review and Geomorphological Perspectives. In World Geomorphological Landscapes (Issue March 2015). https://doi.org /10.1007/978-94-017-8026-1_2
[17]. Zhang, Y., Zhang, D., Liu, K., Mo, X., Wang, S., Zhao, Z., He, X., & Yu, T. (2023). Geological Significance of Neoproterozoic Intrusive Rocks in the South Section of the Ailaoshan Orogenic Belt, SW China: Insights from Petrology, Geochemistry, and Geochronology. Minerals, 13(3).
[18]. Song, D., Xiao, W., Collins, A. S., Glorie, S., Han, C., & Li, Y. (2017). New chronological constrains on the tectonic affinity of the Alxa Block, NW China. Precambrian Research, 299, 230–243.
[19]. Qi, L., Xu, Y., Cawood, P. A., Zhang, H., Zhang, Z., & Du, Y. (2021). Implications for supercontinent reconstructions of mid-late Neoproterozoic volcanic – Sedimentary rocks from the Cathaysia Block, South China. Precambrian Research, 354, 106056.
[20]. Tadesse, S., Milesi, J. P., & Deschamps, Y. (2003). Geology and mineral potential of Ethiopia: A note on geology and mineral map of Ethiopia. Journal of African Earth Sciences, 36(4), 273–313.
[21]. Bedassa, G., Getaneh, W., & Hailu, B. (2019). Geochemical and mineralogical evidence for the supergene origin of kaolin deposits – Central Main Ethiopian Rift. Journal of African Earth Sciences, 149, 143–153.
[22]. Hamilton, M. C., Nedza, J. A., Doody, P., Bates, M. E., Bauer, N. L., Voyadgis, D. E., & Fox-Lent, C. (2016). Web-based geospatial multiple criteria decision analysis using open software and standards. International Journal of Geographical Information Science, 30(8), 1667–1686.
[23] Wahab, G. M. A., Gouda, M., & Ibrahim, G. (2019). Study of physical and mechanical properties for some of Eastern Desert dimension marble and granite utilized in building decoration. Ain Shams Engineering Journal, 10(4), 907–915.
[24]. Gacu, J. G., & Sim, A. A. M. (2022). Effect of marble microparticles as additive on the physical and mechanical properties of concrete mixes. Materials Today: Proceedings, 65, 1491–1497.
[25] Lindawati, L., Yuliza, N. F., & Irwansyah, I. (2020). Thermal Conductivity of Some Marble Stones Available in South Aceh District. IOP Conference Series: Materials Science and Engineering, 854(1).
[26]. Wen, X., Zhou, J., Zheng, S., Yang, Z., Lu, Z., Jiang, X., Zhao, L., Yan, B., Yang, X., & Chen, T. (2024). Geochemical properties, heavy metals and soil microbial community during revegetation process in a production Pb-Zn tailings. Journal of Hazardous Materials, 463, 132809.
[27]. Gaur, N., Sarkar, A., Dutta, D., Gogoi, B. J., Dubey, R., & Dwivedi, S. K. (2022). Evaluation of water quality index and geochemical characteristics of surfacewater from Tawang India. Scientific Reports, 12(1), 1–26.
[28]. Nasuti, A., & Roberts, D. (2023b). Using geophysics to follow and model the Precambrian basement terranes beneath the Caledonian nappes in Finnmark, northern Norway: A case study. Precambrian Research, 384, 106934.
[29]. Billi, P. (2015). World Geomorphological Landscapes Landscapes and Landforms of Ethiopia. In Landscapes and Landforms of Ethiopia .
[30] Yao, W., Li, X., Xia, K., & Hokka, M. (2021). Dynamic flexural failure of rocks under hydrostatic pressure: Laboratory test and theoretical modeling. International Journal of Impact Engineering, 156, 103946. https://doi.org/10.1016/j.ijimpeng.2021.103946
[31] Cui, Y., Xu, C., Xue, L., Dong, J., & Jiang, T. (2023). Experimental study on the reasonable proportions of rock-like materials for water-induced strength degradation in rock slope model test. Scientific Reports, 13(1), 1–18.
[32] Salem, H. S. (2021). Evaluation of the Stone and Marble Industry in Palestine: environmental, geological, health, socioeconomic, cultural, and legal perspectives, in view of sustainable development. Environmental Science and Pollution Research, 28(22), 28058–28080.
[33]. Al-Bashaireh, K. (2021). Ancient white marble trade and its provenance determination. Journal of Archaeological Science: Reports, 35, 102777.
[34]. Ozer, O., Yalcin, F., Tarinc, O. K., & Yalcin, M. G. (2020). Investigation of suitability of marbles to standards with inequality expressions and statistical approach using some physical and mechanical properties. Journal of Inequalities and Applications, 2020(1).
[35]. Sariisik, G. (2012). Determining performance of marble finished products on their usage areas by a new impact-resistance test method. Journal of Testing and Evaluation, 40(6).
[36]. Deyassa, G., Kebede, S., Ayenew, T., & Kidane, T. (2014). Crystalline basement aquifers of Ethiopia: Their genesis, classification and aquifer properties. Journal of African Earth Sciences, 100, 191–202.
[37]. Lee, W. H., Lin, K. L., Chang, T. H., Ding, Y. C., & Cheng, T. W. (2020). Sustainable development and performance evaluation of marble-waste-based geopolymer concrete. Polymers, 12(9).
[38]. Jain, A. K., Jha, A. K., & Shivanshi. (2020). Geotechnical behaviour and micro-analyses of expansive soil amended with marble dust. Soils and Foundations, 60(4), 737–751.
[39]. Liu, J. bin, Zhang, Z. jian, & Leung, A. K. (2022). Mesoscopic and macroscopic investigation of a dolomitic marble subjected to thermal damage. Scientific Reports, 12(1), 1–16. https://doi.org/10.1038/s41598-022-19655-x
[40]. Li, F., Ma, X., & Lai, X. (2022). Petrography, geochemistry and genesis of dolomites in the upper Cambrian Sanshanzi Formation of the western Ordos Basin, northern China. Journal of Asian Earth Sciences, 223, 104980.
[41]. Ma, X., Huang, X., Zhang, H., Hu, X., & Feng, T. (2023). Effect of calcium aluminates on the structure evolution of CaO during the calcium looping process: A DFT study. Chemical Engineering Journal, 452(P4), 139552.
[42]. Priyadarshi Bopegedera, A. M. R. (2022). The Analysis of Dolomitic Marble: A Multifaceted Problem for General Chemistry Students. Journal of Chemical Education, 99(2), 964–974.