Document Type : Original Research Paper
Authors
1 Assistant Professor at the Faculty of Engineering Tarbiat Modares University
2 Department of Rocks Mechanics, Faculty of Engineering, Tarbiat Modares University
Abstract
In recent years, the demand for new trenchless methods has dramatically risen. Pipe jacking is a trenchless method widely used in recent years. Ground deformation is one of the significant parameters that may lead to unrepairable harm to facilities and even people. So, ground deformation analysis is necessary for safety and design reasons. The present study analyzes the factors affecting ground deformation during pipe jacking. This is a descriptive-interventional study. Pipe jacking causes soil displacement in three dimensions (3-D). Therefore, 3-D numerical methods were applied for analysis. In this study, numerical simulation was performed using PLAXIS finite element numerical software, taking the case study into account. The effect of each parameter on the ground deformation pattern was studied in three directions; the uplift and their exact position were then analyzed. It should be noted that displacement analyses were performed in two areas: pipe crown and ground surface. Also, the relation of each parameter was estimated with the ground subsidence. Finally, the effect of each different factor and their sensitivity index were determined using sensitivity analysis. The highest subsidence occurs at the end of the shield due to stress relaxation. Considering the results, it was found that the relationship between the internal friction angle and subsidence is linear and direct. The relationship between the elastic modulus and subsidence is also linear but indirect. The results indicate that the most sensitive factor of ground deformation is the diameter, but the least sensitive factor is the face pressure.
Keywords
Main Subjects