Document Type : Original Research Paper

Authors

Department of Civil Engineering, Chandigarh University, Mohali, India

10.22044/jme.2024.14684.2779

Abstract

Landslides pose significant risks to human life, infrastructure, and the environment, particularly in geologically unstable regions like the Himalayas. This study aims to develop and validate landslide susceptibility maps using Frequency Ratio (FR) and Information Value (IV) models within a GIS framework. Employing high-resolution geospatial data, including geomorphological, topographical, and hydrological factors derived from high-resolution digital elevation models (DEMs) and other geospatial datasets. The susceptibility maps were classified into five categories: Low, Moderate, High, Very High, and Extremely High. The models were trained and validated using a landslide inventory of 1313 landslide events, with a 70:30 split for training and testing datasets. The predictive performance of the models was evaluated using the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, yielding AUC values of 84.1 for the FR model and 83.9 for the IV model. The Landslide Density Index (LDI) further confirmed the models' reliability, indicating higher landslide densities in the predicted high-susceptibility zones. The study demonstrates that both FR and IV models are effective tools for landslide susceptibility mapping and its validation. The findings highlight the FR model's superior predictive accuracy in this specific area. Future research should leverage advanced machine learning techniques, such as XGBoost, Random Forest (RF), Naive Bayes (NB), and K-Nearest Neighbors (KNN), to enhance the reliability and precision of landslide susceptibility models.

Keywords

Main Subjects

[1].          Dhakal, D., Abdi, O., Singh, K., & Sharma, A. (2023). Applications of GIS and Remote Sensing in Highway Project: a Review. Journal of Mining and Environment (JME), 15 (2), 1–13.
[2].          Singh, K. & Kumar, V. (2017). Landslide hazard mapping along national highway-154A in Himachal Pradesh, India using information value and frequency ratio. Arabian Journal of Geosciences, 10 (539), 1-18.
[3].          Wubalem, A. & Meten, M. (2020). Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia. SN Applied Sciences, 2 (807), 1-19.
[4].          Batar, A.K. & Watanabe, T. (2021). Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian himalayan region: Recent developments, gaps, and future directions. ISPRS International Journal of Geo-Information, 10 (114), 1-28.
[5].          Jaiswal, A., Verma, A.K., & Singh, T.N. (2023). Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas. Journal of Rock Mechanics and Geotechnical Engineering, 16, 167-182.
[6].          Jin, L., Wei, J., Luo, C., & Qin, T. (2023). Slope stability analysis based on improved radial movement optimization considering seepage effect. Alexandria Engineering Journal, 79, 591–607.
[7].          Asmare, D. (2023). Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain, northwestern ethiopia. Scientific African, 19.
[8].          Lima, P., Steger, S., Glade, T., & Mergili, M. (2023). Conventional data-driven landslide susceptibility models may only tell us half of the story: Potential underestimation of landslide impact areas depending on the modeling design. Geomorphology, 430.
[9].          Wubalem, A. (2023). Modeling of land suitability for surface irrigation using analytical hierarchy process method in Belessa Districts, northwestern Ethiopia. Heliyon, 9 (3).
[10].        Junaid, M., Abdullah, R.A., Abdelrahman, K., Ullah, A., Mahmood, S., Sa’ari, R., et al. (2024). Assigning resistivity values to rock quality designation indices using integrated unmanned aerial vehicle and 2D electrical resistivity tomography in granitic rock. Geocarto International, 39 (1).
[11].        Sari, M., Seren, A., & Alemdag, S. (2020). Determination of geological structures by geophysical and geotechnical techniques in Kırklartepe Dam Site (Turkey). Journal of Applied Geophysics, 182.
[12].        Rangari, K. & Chaubey Ravi Shankar (2017). Macro scale (1:50,000) landslide susceptibility mapping in parts of Kullu, Mandi, Chamba, Kangra and Lahaul & Spiti districts of Himachal Pradesh. Journal of Engineering Geology, XLII (1,2), 224–233.
[13].        Agrawal, N. & Dixit, J. (2023). GIS-based landslide susceptibility mapping of the Meghalaya-Shillong Plateau region using machine learning algorithms. Bulletin of Engineering Geology and the Environment, 82 (5).
[14].       Singh, K. & Kumar, V. (2021). Slope stability analysis of landslide zones in the part of Himalaya, Chamba, Himachal Pradesh, India. Environmental Earth Sciences, 80 (8).
[15].        Pachuau, L. (2019). Zonation of Landslide Susceptibility and Risk Assessment in Serchhip town, Mizoram. Journal of the Indian Society of Remote Sensing, 47 (9), 1587–1597.
[16].        Singh, K. & Kumar, V. (2018). Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. Journal of Mountain Science, 15 (4), 808–824.
[17].        Singh, K. & Kumar, V. (2018). Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. Journal of Mountain Science, 15 (4), 808–824.
[18].        Banerjee, P., Ghose, M.K., & Pradhan, R. (2018). Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya. Arabian Journal of Geosciences, 11 (7).
[19].        Es-smairi, A., Elmoutchou, B., Mir, R.A., Ouazani Touhami, A. El, & Namous, M. (2023). Delineation of landslide susceptible zones using Frequency Ratio (FR) and Shannon Entropy (SE) models in northern Rif, Morocco. Geosystems and Geoenvironment, 2 (4).
[20].        Veerappan, R., Negi, A., & Siddan, A. (2017). Landslide Susceptibility Mapping and Comparison Using Frequency Ratio and Analytical Hierarchy Process in Part of NH-58, Uttarakhand, India. in: Advancing Culture of Living with Landslides, Springer International Publishing, 1081–1091.
[21].        Ramesh, V. & Anbazhagan, S. (2015). Landslide susceptibility mapping along Kolli hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic models. Environmental Earth Sciences, 73 (12), 8009–8021.
[22].        Sangeeta & Maheshwari, B.K. (2019). Earthquake-Induced Landslide Hazard Assessment of Chamoli District, Uttarakhand Using Relative Frequency Ratio Method. Indian Geotechnical Journal, 49 (1), 108–123.
[23].        Agrawal, N. & Dixit, J. (2023). GIS-based landslide susceptibility mapping of the Meghalaya-Shillong Plateau region using machine learning algorithms. Bulletin of Engineering Geology and the Environment, 82 (5).
[24].        Bhargava, O.N. (2008). An updated introduction to the Spiti geology. Journal of the Palaeontological Society of India, 53(2), 113-129
[25].        Arvind Bhardwaj, S., Rai, I., Rana, P., SSRandhawa, A., & Bhardwaj, A. (2014). A Technical Report on the Lake Formation along Billing Lungpa, Lahaul & Spiti District Himachal Pradesh Type of Report Scientific Report. H.P. State Center on Climate Change (State Council for Science Technology & Environment), 34 SDA Complex, Kasumpti, Shimla-9, Himachal Pradesh, India.
[26].        Tomás, R., Delgado, J., and Serón, J.B. (2007). Modification of Slope Mass Rating (SMR) by continuous functions. International Journal of Rock Mechanics and Mining Sciences, 44, 1062-1069.
[27].        Patidar, A.K., Maurya, D.M., Thakkar, M.G., & Chamyal, L.S. (2007). Fluvial geomorphology and neotectonic activity based on field and GPR data, Katrol hill range, Kachchh, Western India. Quaternary International, 159 (1), 74–92.
[28].        Kour, J., Balgotra, S., Rajput, P., Kour, H., Verma, P.K., & Sawant, S.D. (2020). Medicinal Value of High-Altitude Plants of Indian Himalaya. Botanical Leads for Drug Discovery, Springer Singapore, Singapore, 295–324.
[29].        Hammer, M. (2010). Mountain ghosts: snow leopards and other animals in the mountains of the Altai Republic, Central Asia. Biosphere Expeditions.
[30].        Mishra, A.K. (2023). Tabo Monastery (996 CE) A Vernacular Architecture of Lahaul and Spiti Region of Himachal Pradesh, India: A Preliminary Investigation of Deterioration and Conservation of Murals of gSer-Khang Gumpha. Nakhara: Journal of Environmental Design and Planning. 22 (1).
[31].        Killeen, J., Jaupi, L., and Barrett, B. (2022). Impact assessment of humanitarian demining using object-based peri-urban land cover classification and morphological building detection from VHR Worldview imagery. Remote Sensing Applications: Society and Environment, 27.
[32].        Shano, L., Raghuvanshi, T.K., & Meten, M. (2020). Landslide susceptibility evaluation and hazard zonation techniques – a review. Geoenvironmental Disasters, 7 (1).
[33].        Feizizadeh, B., Jankowski, P., & Blaschke, T. (2014). A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Computers and Geosciences, 64, 81–95.
[34].        Anusha, B.N., Babu, K.R., Kumar, B.P., Sree, P.P., Veeraswamy, G., Swarnapriya, C., et al. (2023). Integrated studies for land suitability analysis towards sustainable agricultural development in semi-arid regions of AP, India. Geosystems and Geoenvironment, 2 (2).
[35].        Zeng, T., Wu, L., Peduto, D., Glade, T., Hayakawa, Y.S., & Yin, K. (2023). Ensemble learning framework for landslide susceptibility mapping: Different basic classifier and ensemble strategy. Geoscience Frontiers, 14 (6).
[36].        Zhou, X., Wen, H., Zhang, Y., Xu, J., & Zhang, W. (2021). Landslide susceptibility mapping using hybrid random forest with Geo detector and RFE for factor optimization. Geoscience Frontiers, 12 (5).
[37].        Kamal, A.S.M.M., Ahmed, B., Tasnim, S., & Sammonds, P. (2022). Assessing rainfall-induced landslide risk in a humanitarian context: The Kutupalong Rohingya Camp in Cox’s Bazar, Bangladesh. Natural Hazards Research, 2 (3), 230–248.
[38].        He, Y., Zhao, Z., Yang, W., Yan, H., Wang, W., Yao, S., et al. (2021). A unified network of information considering superimposed landslide factors sequence and pixel spatial neighborhood for landslide susceptibility mapping. International Journal of Applied Earth Observation and Geoinformation, 104.
[39].        Swain, J.B., Singh, N.J., and Gupta, L.R. (2023). Landslide susceptibility zonation of a hilly region: A quantitative approach. Natural Hazards Research, 4, 75-86.
[40].        Sweta, K., Goswami, A., Peethambaran, B., Bahuguna, I.M., & Rajawat, A.S. (2022). Landslide susceptibility zonation around Dharamshala, Himachal Pradesh, India: an artificial intelligence model–based assessment. Bulletin of Engineering Geology and the Environment, 81 (8).
[41].        Lallianthanga, R.K. & Lalbiakmawia, F. (2014). Landslide Susceptibility Zonation of Kolasib District, Mizoram, India Using Remote Sensing and GIS Techniques. C)International Journal of Engineering Sciences & Research Technology, 3 (3).
[42].        Chaturvedi, P., Srivastava, S., & Kaur, P.B. (2017). Landslide early warning system development using statistical analysis of sensors’ data at tangni landslide, Uttarakhand, India. Advances in Intelligent Systems and Computing, Springer Verlag, 259–270.
[43].        Xu, C. (2015). Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies. Geoscience Frontiers, 6 (6), 825–836.
[44].        Lallianthanga, R.K., Lalbiakmawia, F., and Lalramchuana, F. (2013). Landslide Hazard Zonation of Mamit Town, Mizoram, India using Remote Sensing and GIS Techniques. International Journal of Geology, Earth and Environmental Sciences, 3(1), 184-194
[45].        Verma, R. (2014). Landslide Hazard in Mizoram: Case Study of Laipuitlang Landslide, Aizawl. International Journal of Science and Research (IJSR), 3(6), 2262-2266
[46].     Laltanpuia, Z.D. and Lallianthanga, R.K. (2013). Landslide Hazard Zonation of Lunglei Town, Mizoram, India Using High Resolution Satellite Data. International Journal of Advanced Remote Sensing and GIS, 2(1), 148-159
[47].        Anbalagan, R., Chakraborty, D., and Kohli, A. (2008). Landslide hazard zonation (LHZ) mapping on meso-scale for systematic town planning in mountainous terrain. Journal of Scientific & Industrial Research, 67, 486-497
[48].        Lin, M.L. and Tung, C.C. (2004). A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Engineering Geology. 71 (1–2), 63–77.
[49].        Herold, M., Latham, J.S., Di Gregorio, A., and Schmullius, C.C. (2006). Evolving standards in land cover characterization. Journal of Land Use Science, 1 (2–4), 157–168.
[50].        Kumar, R. & Anbalagan, R. (2016). Landslide Susceptibility Mapping Using Analytical Hierarchy Process (AHP) in Tehri Reservoir Rim Region, Uttarakhand. Journal Geological Society of India, 87, 271-286.
[51].        Gadtaula, A. & Dhakal, S. (2019). Landslide susceptibility mapping using Weight of Evidence Method in Haku, Rasuwa District, Nepal. Journal of Nepal Geological Society, 58, 163–171.
[52].        Badola, S., Mishra, V.N., Parkash, S., & Pandey, M. (2023). Rule-based fuzzy inference system for landslide susceptibility mapping along national highway 7 in Garhwal Himalayas, India. Quaternary Science Advances, 11, 100093.
[53].        R M, Y. & Dolui, B. (2021). Statistical and machine intelligence based model for landslide susceptibility mapping of Nilgiri district in India. Environmental Challenges, 5.
[54].        Xu, H., He, X., Pradhan, B., & Sheng, D. (2023). A pre-trained deep-learning surrogate model for slope stability analysis with spatial variability. Soils and Foundations, 63 (3).
[55].        Deng, D. ping, Li, L., & Zhao, L. heng (2017). Limit equilibrium method (LEM) of slope stability and calculation of comprehensive factor of safety with double strength-reduction technique. Journal of Mountain Science, 14 (11), 2311–2324.
[56].        Z. T. Bieniawski (1989). Engineering Rock Mass Classifications_ A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. A Wiley-Inter science Publication, Canada.
[57].        Tiwari, B., Asce, M., & Do, H. (2011). Deterministic Seismic Hazard Analysis of a Highway Sector with GIS. Geo-Frontiers © ASCE 2011, 1554–1563.
[58].        Joshi, J., Bharadwaj, D., Paudyal, P., & Timalsina, N. (2017). Landslide inventory, susceptibility mapping and recommendation of the mitigation measures in Nuwakot district. Journal of Nepal Geological Society, 53, 107–118.
[59].        Huang, F., Teng, Z., Guo, Z., Catani, F., & Huang, J. (2023). Uncertainties of landslide susceptibility prediction: Influences of different spatial resolutions, machine learning models and proportions of training and testing dataset. Rock Mechanics Bulletin, 2 (1), 100028.
[60].        Ciampalini, A., Raspini, F., Bianchini, S., Frodella, W., Bardi, F., Lagomarsino, D., et al. (2015). Remote sensing as tool for development of landslide databases: The case of the Messina Province (Italy) geodatabase. Geomorphology, 249, 103–118.
[61].        Shao, X. & Xu, C. (2022). Earthquake-induced landslides susceptibility assessment: A review of the state-of-the-art. Natural Hazards Research, 2 (3), 172–182.
[62].        Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54 (2), 311–324.
[63].        Nagarajan, R. (2002). Rapid assessment procedure to demarcate areas susceptible to earthquake-induced ground failures for environment management - A case study from parts of northeast India. Bulletin of Engineering Geology and the Environment, 61 (2), 99–119.
[64].        Nandy, S., Singh, C., Das, K.K., Kingma, N.C., & Kushwaha, S.P.S. (2015). Environmental vulnerability assessment of eco-development zone of Great Himalayan National Park, Himachal Pradesh, India. Ecological Indicators, 57, 182–195.
[65].        Chen, C.Y. & Huang, W.L. (2013). Land use change and landslide characteristics analysis for community-based disaster mitigation. Environmental Monitoring and Assessment, 185 (5), 4125–4139.
[66].        Frattini, P., Crosta, G., & Carrara, A. (2010). Techniques for evaluating the performance of landslide susceptibility models. Engineering Geology, 111 (1–4), 62–72.
[67].        Ikram, Q.D., Jamalzi, A.R., Hamidi, A.R., Ullah, I., & Shahab, M. (2024). Flood risk assessment of the population in Afghanistan: A spatial analysis of hazard, exposure, and vulnerability. Natural Hazards Research, 4 (1), 46–55.
[68].        Thi Ngo, P.T., Panahi, M., Khosravi, K., Ghorbanzadeh, O., Kariminejad, N., Cerda, A., et al. (2021). Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geoscience Frontiers, 12 (2), 505–519.
[69].        Tyagi, A., Kamal Tiwari, R., & James, N. (2022). A review on spatial, temporal and magnitude prediction of landslide hazard. Journal of Asian Earth Sciences: X. 7.
[70].        Cook, M.E., Brook, M.S., Hamling, I.J., Cave, M., Tunnicliffe, J.F., & Holley, R. (2023). Investigating slow-moving shallow soil landslides using Sentinel-1 InSAR data in Gisborne, New Zealand. Landslides, 20 (2), 427–446.
[71].        Tempa, K., Peljor, K., Wangdi, S., Ghalley, R., Jamtsho, K., Ghalley, S., et al. (2021). UAV technique to localize landslide susceptibility and mitigation proposal: A case of Rinchending Goenpa landslide in Bhutan. Natural Hazards Research. 1 (4), 171–186.
[72].        Huang, F., Yan, J., Fan, X., Yao, C., Huang, J., Chen, W., et al. (2022). Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions. Geoscience Frontiers, 13 (2).
[73].        Chowdhury, M.S. (2023). A review on landslide susceptibility mapping research in Bangladesh. Heliyon, 9 (7).
[74].        Hammad Khaliq, A., Basharat, M., Talha Riaz, M., Tayyib Riaz, M., Wani, S., Al-Ansari, N., et al. (2023). Spatiotemporal landslide susceptibility mapping using machine learning models: A case study from district Hattian Bala, NW Himalaya, Pakistan. Ain Shams Engineering Journal, 14 (3).
[75].        Panchal, S. & Shrivastava, A.K. (2022). Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Engineering Journal, 13 (3).
[76].        Khan, A.I. & Al-Mulla, Y. (2019). Unmanned aerial vehicle in the machine learning environment. Procedia Comput Sci, Elsevier B.V., 46–53.
[77].        Mandal, K., Saha, S., & Mandal, S. (2021). Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geoscience Frontiers, 12 (5).
[78].        Hong, H. (2023). Assessing landslide susceptibility based on hybrid Best-first decision tree with ensemble learning model. Ecological Indicators, 147.
[79].        Gautam, D., Neupane, P., & Raj Paudyal, K. (2018). Landslide inventory mapping and assessment along the Ramche-Jharlang area in Dhading, Rasuwa and Nuwakot districts, Lesser Himalaya Central Nepal. Journal of Nepal Geological Society, 55 (Sp. Issue), 103–108
[80].        Feizizadeh, B., Shadman Roodposhti, M., Jankowski, P., & Blaschke, T. (2014). A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Computers and Geosciences. 73, 208–221.
[81].        Ali, S.A., Parvin, F., Vojteková, J., Costache, R., Linh, N.T.T., Pham, Q.B., et al. (2021). GIS-based landslide susceptibility modeling: A comparison between fuzzy multi-criteria and machine learning algorithms. Geoscience Frontiers, 12 (2), 857–876.
[82].        Achour, Y. & Pourghasemi, H.R. (2020). How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11 (3), 871–883.
[83].        Saha, S., Majumdar, P., & Bera, B. (2023). Deep learning and benchmark machine learning based landslide susceptibility investigation, Garhwal Himalaya (India). Quaternary Science Advances, 10.
[84].        Das, J., Saha, P., Mitra, R., Alam, A., & Kamruzzaman, M. (2023). GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India. Heliyon, 9 (5).
[85].        Ullah, K., Wang, Y., Fang, Z., Wang, L., & Rahman, M. (2022). Multi-hazard susceptibility mapping based on Convolutional Neural Networks. Geoscience Frontiers, 13 (5).
[86].        Paryani, S., Neshat, A., & Pradhan, B. (2021). Improvement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithms. Egyptian Journal of Remote Sensing and Space Science, 24 (3), 845–855.
[87].        Muñoz-Torrero Manchado, A., Antonio Ballesteros-Cánovas, J., Allen, S., & Stoffel, M. (2022). Deforestation controls landside susceptibility in Far-Western Nepal. Catena, 219.
[88].        Grabowski, D., Laskowicz, I., Małka, A., & Rubinkiewicz, J. (2022). Geoenvironmental conditioning of landsliding in river valleys of lowland regions and its significance in landslide susceptibility assessment: A case study in the Lower Vistula Valley, Northern Poland. Geomorphology, 419.
[89].        Kamran, M. & Yamamoto, K. (2023). Evolution and use of remote sensing in ecological vulnerability assessment: A review. Ecological Indicators, 148.
[90].        Tangdamrongsub, N., Han, S.C., Jasinski, M.F., & Šprlák, M. (2019). Quantifying water storage change and land subsidence induced by reservoir impoundment using GRACE, Landsat, and GPS data. Remote Sensing of Environment, 233.
[91].        Chang, Z., Catani, F., Huang, F., Liu, G., Meena, S.R., Huang, J., et al. (2023). Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. Journal of Rock Mechanics and Geotechnical Engineering, 15 (5), 1127–1143.
[92].        Dhungana, G., Ghimire, R., Poudel, R., & Kumal, S. (2023). Landslide susceptibility and risk analysis in Benighat Rural Municipality, Dhading, Nepal. Natural Hazards Research, 3 (2), 170–185.
[93].        Patil, A.S. & Panhalkar, S.S. (2023). Remote sensing and GIS-based landslide susceptibility mapping using LNRF method in part of Western Ghats of India. Quaternary Science Advances, 11, 100095.
[94].        Ciampalini, A., Raspini, F., Lagomarsino, D., Catani, F., & Casagli, N. (2016). Landslide susceptibility map refinement using PSInSAR data. Remote Sensing of Environment, 184, 302–315.
[95].        Roy, J. & Saha, S. (2022). Ensemble hybrid machine learning methods for gully erosion susceptibility mapping: K-fold cross validation approach. Artificial Intelligence in Geosciences, 3, 28–45.
[96].        Wei, R., Ye, C., Sui, T., Ge, Y., Li, Y., & Li, J. (2022). Combining spatial response features and machine learning classifiers for landslide susceptibility mapping. International Journal of Applied Earth Observation and Geoinformation, 107.
[97].        Youssef, A.M. & Pourghasemi, H.R. (2021). Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geoscience Frontiers, 12 (2), 639–655.
[98].        Saha, A. & Saha, S. (2022). Integrating the artificial intelligence and hybrid machine learning algorithms for improving the accuracy of spatial prediction of landslide hazards in Kurseong Himalayan Region. Artificial Intelligence in Geosciences, 3, 14–27.
[99].        Nandi, A. & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110 (1–2), 11–20.