Document Type : Original Research Paper

Authors

1 Department of Mining, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

2 School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM)

3 Faculty of Engineering, Malayer University, Malayer, Iran

Abstract

Discrimination of geochemical anomalies from background is a challenge in that elemental dispersion patterns are affected by a variety of geological factors, which vary from one to another area. While statistical and fractal methods are commonly employed for anomaly detection, they struggle with selecting optimal thresholds. This study proposes the Grey Wolf Optimizer (GWO) algorithm as a novel approach for identifying the optimal boundary between anomalies and background. Stream sediment geochemical data from a copper-mineralized area of the Sarduiyeh-Baft sheets in southeast Iran were utilized for analysis. The Geochemical Mineralization Probability Index (GMPI) was first calculated for Cu-Au, Mo-As, Pb-Zn, and porphyry distributions. Subsequently, fractal methods were used to identify anomalous populations within each GMPI. The GWO algorithm was then applied to these distributions to determine the optimal thresholds. Risk analysis, calculated as the ratio of covered copper occurrences to the covered area, revealed superior reliability for the GWO-derived limit compared to those obtained using fractal methods. For porphyry GMPI values, while the fractal reliability indices are 0.127, 0.44, and 0.5, the GWO limit achieved a value of 0.66. Risk analysis for Cu-Au distribution also caused more desired result for GWO limit rather that fractal ones. This demonstrates the enhanced performance and superior reliability of the GWO algorithm for optimizing anomaly detection thresholds in GMPI data.

Keywords

Main Subjects

[1]. Mostafaei, K., & Ramazi, H. (2019). Mineral resource estimation using a combination of drilling and IP-Rs data using statistical and cokriging methods. Bulletin of the mineral research and exploration, 160(160), 177-195.
[2]. Mostafaei, K., & Kianpour, M. (2022). Application of Magnetometry in Manto-type Copper Deposit Exploration, Case study: Meyami, Iran. Rudarsko-geološko-naftni zbornik, 37(5), 1-14.
[3]. Mohammadi, N. M., Hezarkhani, A., Saljooghi, B. S. (2016). Separation of a geochemical anomaly from background by fractal and U-statistic methods, a case study: Khooni district, Central Iran. Geochemistry, 76(4), 491-499.
[4]. Yilmaz, H., Yousefi, M., Parsa, M., Sonmez, F. N., & Maghsoodi, A. (2019). Singularity mapping of bulk leach extractable gold and− 80# stream sediment geochemical data in recognition of gold and base metal mineralization footprints in Biga Peninsula South, Turkey. Journal of African Earth Sciences, 153, 156-172.
[5]. Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., & Mihalasky, M. J. (2022). Recognition and incorporation of mineralization-efficient fault systems to produce a strengthened anisotropic geochemical singularity. Journal of Geochemical Exploration, 235, 106967.
[6]. Yousefi, M., Barak, S., Salimi, A., & Yousefi, S. (2023). Should Geochemical Indicators Be Integrated to Produce Enhanced Signatures of Mineral Deposits? A Discussion with Regard to Exploration Scale. Journal of Mining and Environment, 14(3), 1011-1018. doi: 10.22044/jme.2023.13160.2398
[7]. Seyedrahimi-Niaraq, M., Shokri, N., & Lotfibakhsh, A. (2023). Improving the method of U-spatial statistics by modeling the enrichment index of stream sediments for the purpose of introducing geochemical anomalous areas of epithermal gold type mineralization. Journal of Mining Engineering, 18(59), 15-30.
[8]. Chen, J., Yousefi, M., Zhao, Y., Zhang, C., Zhang, S., Mao, Z., & Han, R. (2019). Modelling ore-forming processes through a cosine similarity measure: Improved targeting of porphyry copper deposits in the Manzhouli belt, China. Ore Geology Reviews, 107, 108-118.
[9]. Yousefi, M., & Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[10] Seyedrahimi-Niaraq, M., & Mahdiyanfar, H. (2021). Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry, 81(4), 125830.
[10]. Reimann, C., Filzmoser, P., Hron, K., Kynčlová, P., Garrett, R. G. (2017). A new method for correlation analysis of compositional (environmental) data–a worked example. Science of the Total Environment, 607, 965-971.
[11]. Yousefi, M., Yousefi, S., & Kamkar Rouhani, A. (2023). Recognition coefficient of spatial geological features, an approach to facilitate criteria weighting for mineral exploration targeting. International Journal of Mining and Geo-Engineering, (), 251-258. doi: 10.22059/ijmge.2023.355380.595037
[12]. Seyedrahimi-Niaraq, M., Mahdiyanfar, H., & Mokhtari, A. R. (2022). Integrating principal component analysis and U-statistics for mapping polluted areas in mining districts. Journal of Geochemical Exploration, 234, 106924.
[13]. Cheng, Q., & Li, Q. (2002). A fractal concentration–area method for assigning a color palette for image representation. Computers & geosciences, 28(4), 567-575.
[14]. Chen, Y., Lu, L., & Li, X. (2014). Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly. Journal of Geochemical Exploration, 140, 56-63.
[15]. Abedi, M., Kashani, S. B. M., Norouzi, G. H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146.
[16]. Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, G. R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.
[17]. Mostafaei, K., Maleki, S., Jodeiri Shokri, B., & Yousefi, M. (2023). Predicting gold grade by using support vector machine and neural network to generate an evidence layer for 3D prospectivity analysis. International Journal of Mining and Geo-Engineering, 57(4),435-444.
[18]. Afzal, P., Khakzad, A., Moarefvand, P., Omran, N. R., Esfandiari, B., & Alghalandis, Y. F. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104(1-2), 34-46.
[19]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2024). Application of hybrid Wavelet-Fractal approach for denoising and spatial modeling of environmental pollution. Journal of Mining and Environment. doi: 10.22044/jme.2024.14197.2643
[20]. Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zarifi, A. Z., Yasrebi, A. B. (2016). Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. Journal of African Earth Sciences, 119, 139-149.
[21]. Ghezelbash, R., & Maghsoudi, A. (2018). A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran. Arabian Journal of Geosciences, 11, 1-15.
[23]. Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2020). Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Computers & Geosciences, 134, 104335.
[24]. Aryafar, A., Moeini, H., & Khosravi, V. (2020). CRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran. International Journal of Mining and Geo-Engineering, 54(1), 33-38.
[25]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., & Sadeghi, B. 2022. Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals, 12(6), 689.
[26]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2022). Improvement of geochemical prospectivity mapping using power spectrum–area fractal modelling of the multi-element mineralization factor (SAF-MF). Geochemistry: Exploration, Environment, Analysis, 22(4), geochem2022-015.
[27]. Heidari, S. M., Afzal, P., & Sadeghi, B. (2024). Molybdenum and gold distribution variances within Iranian copper porphyry deposits. Journal of Geochemical Exploration, 261, 107471.
[28]. Pourgholam, M. M., Afzal, P., Adib, A., Rahbar, K., & Gholinejad, M. (2024). Recognition of REEs anomalies using an image Fusion fractal-wavelet model in Tarom metallogenic zone, NW Iran. Geochemistry, 84(2), 126093.
[29]. Mostafaei, K., Ramazi, H.  (2018). Compiling and verifying 3D models of 2D induced polarization and resistivity data by geostatistical methods. Acta Geophysica, 66, 959-971.
[30]. Chen, Y., & Shayilan, A. (2022). Dictionary learning for multivariate geochemical anomaly detection for mineral exploration targeting. Journal of Geochemical exploration, 235, 106958.
[31]. Luo, Z., Zuo, R., Xiong, Y., & Zhou, B. (2023). Metallogenic-Factor Variational Autoencoder for Geochemical Anomaly Detection by Ad-Hoc and Post-Hoc Interpretability Algorithms. Natural Resources Research, 1-19.
[32]. Chen, Y., & Lu, L. (2023). The Anomaly Detector, Semi-supervised Classifier, and Supervised Classifier Based on K-Nearest Neighbors in Geochemical Anomaly Detection: A Comparative Study. Mathematical Geosciences, 1-23.
[33]. Chen, Z., Xiong, Y., Yin, B., Sun, S., & Zuo, R. (2023). Recognizing geochemical patterns related to mineralization using a self-organizing map. Applied Geochemistry, 151, 105621.
[34]. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24-35.
[35]. Helba, H. A., El-Makky, A. M., & Khalil, K. I. (2021). Application of the CN fractal model, factor analysis and geochemical mineralization probability index (GMPI) for delineating geochemical anomalies related to a Mn-Fe deposit and associated Cu mineralization in west-central Sinai, Egypt. Geochemistry: Exploration, Environment, Analysis, 21(3), geochem2021-031.
[36]. Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3-18.
[37]. Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M., & Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[38]. Ouchchen, M., Boutaleb, S., Abia, E. H., El Azzab, D., Miftah, A., Dadi, B., & Abioui, M. (2022). Exploration targeting of copper deposits using staged factor analysis, geochemical mineralization prospectivity index, and fractal model (Western Anti-Atlas, Morocco). Ore Geology Reviews, 143, 104762.
[39]. Marques, E. D., Castro, C. C., de Assis Barros, R., Lombello, J. C., de Souza Marinho, M., Araújo, J. C. S., & Santos, E. A. (2023). Geochemical mapping by stream sediments of the NW portion of Quadrilátero Ferrífero, Brazil: Application of the exploratory data analysis (EDA) and a proposal for generation of new gold targets in Pitangui gold district. Journal of Geochemical Exploration, 250, 107232.
[40]. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18.
[41]. Cui, Z. H., and GAO, X. Z. (2012). Theory and applications of swarm intelligence. Neural Computing and Applications. 21, 205–206.
[42]. Parpinelli, R. S., & Lopes, H. S. (2011). New inspirations in swarm intelligence: a survey. International Journal of Bio-Inspired Computation, 3(1), 1-16.
[43]. Leboucher, C., Chelouah, R., Siarry, P., Le Ménec, S. (2012). A swarm intelligence method combined to evolutionary game theory applied to the resources allocation problem. International Journal of Swarm Intelligence Research (IJSIR), 3(2), 20-38.
[44]. Zhang, Z., Long, K., Wang, J., Dressler, F. (2013). On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Communications Surveys & Tutorials, 16(1), 513-537.
[45]. Li, S. Y., Wang, S. M., Wang, P. F., Su, X. L., Zhang, X. S., Dong, Z. H. (2018). An improved grey wolf optimizer algorithm for the inversion of geoelectrical data. Acta Geophysica, 66(4), 607-621.
[46]. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering problems. Expert Systems with Applications, 166, 113917.
[47]. Otair, M., Ibrahim, O. T., Abualigah, L., Altalhi, M., & Sumari, P. (2022). An enhanced grey wolf optimizer-based particle swarm optimizer for intrusion detection system in wireless sensor networks. Wireless Networks, 28(2), 721-744.
[48]. Almazini, H. F., Ku-Mahamud, K. R., & Almazini, H. (2023). Heuristic Initialization Using Grey Wolf Optimizer Algorithm for Feature Selection in Intrusion Detection. International Journal of Intelligent Engineering & Systems, 16(1), 410-418.
[49]. Li, S., Mao, J., & Li, Z. (2023). An EEMD-SVD method based on gray wolf optimization algorithm for lidar signal noise reduction. International Journal of Remote Sensing, 44(17), 5448-5472.
[50]. Mostafaei, K., Kianpour, M. N., & Yousefi, M. (2024). Delineation of Gold Exploration Targets based on Prospectivity Models through an Optimization Algorithm. Journal of Mining and Environment, 15(2), 597-611.
[51]. Hezarkhani, A. (2006). Mineralogy and fluid inclusion investigations in the Reagan Porphyry System, Iran, the path to an uneconomic porphyry copper deposit. Journal of Asian Earth Sciences, 27(5), 598-612.
[52]. Azizi, H., Stern, R. J., Topuz, G., Asahara, Y., & Moghadam, H. S. (2019). Late Paleocene adakitic granitoid from NW Iran and comparison with adakites in the NE Turkey: Adakitic melt generation in normal continental crust. Lithos, 346, 105151.
[53]. Moinevaziri, H., Akbarpour, A., & Azizi, H. (2015). Mesozoic magmatism in the northwestern Sanandaj–Sirjan zone as an evidence for active continental margin. Arabian journal of geosciences, 8, 3077-3088.
[54]. Shafiei, B., Haschke, M., & Shahabpour, J. (2009). Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44, 265-283.
[55]. Dorani, M., & Moradian, A. (2007). Geochemical and tectonomagmatic investigation of gabbros in southwest of Shahr-Babak, Kerman Province. Iran Soc Cryst Mineral, 86, 193-210.
[56]. Hezarkhani, A. (2006). Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit, Iran: evidence from fluid inclusions. Journal of Asian Earth Sciences, 28(4-6), 409-422.
[57]. Hezarkhani, A. (2009). Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions. Journal of Geochemical Exploration, 101(3), 254-264.
[58]. Afzal, P., Khakzad, A., Moarefvand, P., Omran, N. R., Esfandiari, B., & Alghalandis, Y. F. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104(1-2), 34-46.
[60]. Sepahi, A. A., Ghoreishvandi, H., Maanijou, M., Maruoka, T., Vahidpour, H., 2020. Geochemical description and sulfur isotope data for Shahrak intrusive body and related Fe‐mineralization (east Takab), northwest Iran. Island Arc, 29(1), e12367.
[61]. Geological survey of Iran, 1972. www.ngdi.ir
[62]. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14(1), 45-58.
[63]. Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis. (2014). Grey wolf optimizer. Advances in engineering software 69: 46-61.