[1]. Mostafaei, K., & Ramazi, H. (2019). Mineral resource estimation using a combination of drilling and IP-Rs data using statistical and cokriging methods. Bulletin of the mineral research and exploration, 160(160), 177-195.
[2]. Mostafaei, K., & Kianpour, M. (2022). Application of Magnetometry in Manto-type Copper Deposit Exploration, Case study: Meyami, Iran. Rudarsko-geološko-naftni zbornik, 37(5), 1-14.
[3]. Mohammadi, N. M., Hezarkhani, A., Saljooghi, B. S. (2016). Separation of a geochemical anomaly from background by fractal and U-statistic methods, a case study: Khooni district, Central Iran. Geochemistry, 76(4), 491-499.
[4]. Yilmaz, H., Yousefi, M., Parsa, M., Sonmez, F. N., & Maghsoodi, A. (2019). Singularity mapping of bulk leach extractable gold and− 80# stream sediment geochemical data in recognition of gold and base metal mineralization footprints in Biga Peninsula South, Turkey. Journal of African Earth Sciences, 153, 156-172.
[5]. Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., & Mihalasky, M. J. (2022). Recognition and incorporation of mineralization-efficient fault systems to produce a strengthened anisotropic geochemical singularity. Journal of Geochemical Exploration, 235, 106967.
[6]. Yousefi, M., Barak, S., Salimi, A., & Yousefi, S. (2023). Should Geochemical Indicators Be Integrated to Produce Enhanced Signatures of Mineral Deposits? A Discussion with Regard to Exploration Scale. Journal of Mining and Environment, 14(3), 1011-1018. doi: 10.22044/jme.2023.13160.2398
[7]. Seyedrahimi-Niaraq, M., Shokri, N., & Lotfibakhsh, A. (2023). Improving the method of U-spatial statistics by modeling the enrichment index of stream sediments for the purpose of introducing geochemical anomalous areas of epithermal gold type mineralization. Journal of Mining Engineering, 18(59), 15-30.
[8]. Chen, J., Yousefi, M., Zhao, Y., Zhang, C., Zhang, S., Mao, Z., & Han, R. (2019). Modelling ore-forming processes through a cosine similarity measure: Improved targeting of porphyry copper deposits in the Manzhouli belt, China. Ore Geology Reviews, 107, 108-118.
[9]. Yousefi, M., & Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[10] Seyedrahimi-Niaraq, M., & Mahdiyanfar, H. (2021). Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry, 81(4), 125830.
[10]. Reimann, C., Filzmoser, P., Hron, K., Kynčlová, P., Garrett, R. G. (2017). A new method for correlation analysis of compositional (environmental) data–a worked example. Science of the Total Environment, 607, 965-971.
[11]. Yousefi, M., Yousefi, S., & Kamkar Rouhani, A. (2023). Recognition coefficient of spatial geological features, an approach to facilitate criteria weighting for mineral exploration targeting. International Journal of Mining and Geo-Engineering, (), 251-258. doi: 10.22059/ijmge.2023.355380.595037
[12]. Seyedrahimi-Niaraq, M., Mahdiyanfar, H., & Mokhtari, A. R. (2022). Integrating principal component analysis and U-statistics for mapping polluted areas in mining districts. Journal of Geochemical Exploration, 234, 106924.
[13]. Cheng, Q., & Li, Q. (2002). A fractal concentration–area method for assigning a color palette for image representation. Computers & geosciences, 28(4), 567-575.
[14]. Chen, Y., Lu, L., & Li, X. (2014). Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly. Journal of Geochemical Exploration, 140, 56-63.
[15]. Abedi, M., Kashani, S. B. M., Norouzi, G. H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146.
[16]. Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, G. R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.
[17]. Mostafaei, K., Maleki, S., Jodeiri Shokri, B., & Yousefi, M. (2023). Predicting gold grade by using support vector machine and neural network to generate an evidence layer for 3D prospectivity analysis. International Journal of Mining and Geo-Engineering, 57(4),435-444.
[18]. Afzal, P., Khakzad, A., Moarefvand, P., Omran, N. R., Esfandiari, B., & Alghalandis, Y. F. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104(1-2), 34-46.
[19]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2024). Application of hybrid Wavelet-Fractal approach for denoising and spatial modeling of environmental pollution. Journal of Mining and Environment. doi: 10.22044/jme.2024.14197.2643
[20]. Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zarifi, A. Z., Yasrebi, A. B. (2016). Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. Journal of African Earth Sciences, 119, 139-149.
[21]. Ghezelbash, R., & Maghsoudi, A. (2018). A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran. Arabian Journal of Geosciences, 11, 1-15.
[23]. Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2020). Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Computers & Geosciences, 134, 104335.
[24]. Aryafar, A., Moeini, H., & Khosravi, V. (2020). CRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran. International Journal of Mining and Geo-Engineering, 54(1), 33-38.
[25]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., & Sadeghi, B. 2022. Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals, 12(6), 689.
[26]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2022). Improvement of geochemical prospectivity mapping using power spectrum–area fractal modelling of the multi-element mineralization factor (SAF-MF). Geochemistry: Exploration, Environment, Analysis, 22(4), geochem2022-015.
[27]. Heidari, S. M., Afzal, P., & Sadeghi, B. (2024). Molybdenum and gold distribution variances within Iranian copper porphyry deposits. Journal of Geochemical Exploration, 261, 107471.
[28]. Pourgholam, M. M., Afzal, P., Adib, A., Rahbar, K., & Gholinejad, M. (2024). Recognition of REEs anomalies using an image Fusion fractal-wavelet model in Tarom metallogenic zone, NW Iran. Geochemistry, 84(2), 126093.
[29]. Mostafaei, K., Ramazi, H. (2018). Compiling and verifying 3D models of 2D induced polarization and resistivity data by geostatistical methods. Acta Geophysica, 66, 959-971.
[30]. Chen, Y., & Shayilan, A. (2022). Dictionary learning for multivariate geochemical anomaly detection for mineral exploration targeting. Journal of Geochemical exploration, 235, 106958.
[31]. Luo, Z., Zuo, R., Xiong, Y., & Zhou, B. (2023). Metallogenic-Factor Variational Autoencoder for Geochemical Anomaly Detection by Ad-Hoc and Post-Hoc Interpretability Algorithms. Natural Resources Research, 1-19.
[32]. Chen, Y., & Lu, L. (2023). The Anomaly Detector, Semi-supervised Classifier, and Supervised Classifier Based on K-Nearest Neighbors in Geochemical Anomaly Detection: A Comparative Study. Mathematical Geosciences, 1-23.
[33]. Chen, Z., Xiong, Y., Yin, B., Sun, S., & Zuo, R. (2023). Recognizing geochemical patterns related to mineralization using a self-organizing map. Applied Geochemistry, 151, 105621.
[34]. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24-35.
[35]. Helba, H. A., El-Makky, A. M., & Khalil, K. I. (2021). Application of the CN fractal model, factor analysis and geochemical mineralization probability index (GMPI) for delineating geochemical anomalies related to a Mn-Fe deposit and associated Cu mineralization in west-central Sinai, Egypt. Geochemistry: Exploration, Environment, Analysis, 21(3), geochem2021-031.
[36]. Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3-18.
[37]. Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M., & Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[38]. Ouchchen, M., Boutaleb, S., Abia, E. H., El Azzab, D., Miftah, A., Dadi, B., & Abioui, M. (2022). Exploration targeting of copper deposits using staged factor analysis, geochemical mineralization prospectivity index, and fractal model (Western Anti-Atlas, Morocco). Ore Geology Reviews, 143, 104762.
[39]. Marques, E. D., Castro, C. C., de Assis Barros, R., Lombello, J. C., de Souza Marinho, M., Araújo, J. C. S., & Santos, E. A. (2023). Geochemical mapping by stream sediments of the NW portion of Quadrilátero Ferrífero, Brazil: Application of the exploratory data analysis (EDA) and a proposal for generation of new gold targets in Pitangui gold district. Journal of Geochemical Exploration, 250, 107232.
[40]. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18.
[41]. Cui, Z. H., and GAO, X. Z. (2012). Theory and applications of swarm intelligence. Neural Computing and Applications. 21, 205–206.
[42]. Parpinelli, R. S., & Lopes, H. S. (2011). New inspirations in swarm intelligence: a survey. International Journal of Bio-Inspired Computation, 3(1), 1-16.
[43]. Leboucher, C., Chelouah, R., Siarry, P., Le Ménec, S. (2012). A swarm intelligence method combined to evolutionary game theory applied to the resources allocation problem. International Journal of Swarm Intelligence Research (IJSIR), 3(2), 20-38.
[44]. Zhang, Z., Long, K., Wang, J., Dressler, F. (2013). On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Communications Surveys & Tutorials, 16(1), 513-537.
[45]. Li, S. Y., Wang, S. M., Wang, P. F., Su, X. L., Zhang, X. S., Dong, Z. H. (2018). An improved grey wolf optimizer algorithm for the inversion of geoelectrical data. Acta Geophysica, 66(4), 607-621.
[46]. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering problems. Expert Systems with Applications, 166, 113917.
[47]. Otair, M., Ibrahim, O. T., Abualigah, L., Altalhi, M., & Sumari, P. (2022). An enhanced grey wolf optimizer-based particle swarm optimizer for intrusion detection system in wireless sensor networks. Wireless Networks, 28(2), 721-744.
[48]. Almazini, H. F., Ku-Mahamud, K. R., & Almazini, H. (2023). Heuristic Initialization Using Grey Wolf Optimizer Algorithm for Feature Selection in Intrusion Detection. International Journal of Intelligent Engineering & Systems, 16(1), 410-418.
[49]. Li, S., Mao, J., & Li, Z. (2023). An EEMD-SVD method based on gray wolf optimization algorithm for lidar signal noise reduction. International Journal of Remote Sensing, 44(17), 5448-5472.
[50]. Mostafaei, K., Kianpour, M. N., & Yousefi, M. (2024). Delineation of Gold Exploration Targets based on Prospectivity Models through an Optimization Algorithm. Journal of Mining and Environment, 15(2), 597-611.
[51]. Hezarkhani, A. (2006). Mineralogy and fluid inclusion investigations in the Reagan Porphyry System, Iran, the path to an uneconomic porphyry copper deposit. Journal of Asian Earth Sciences, 27(5), 598-612.
[52]. Azizi, H., Stern, R. J., Topuz, G., Asahara, Y., & Moghadam, H. S. (2019). Late Paleocene adakitic granitoid from NW Iran and comparison with adakites in the NE Turkey: Adakitic melt generation in normal continental crust. Lithos, 346, 105151.
[53]. Moinevaziri, H., Akbarpour, A., & Azizi, H. (2015). Mesozoic magmatism in the northwestern Sanandaj–Sirjan zone as an evidence for active continental margin. Arabian journal of geosciences, 8, 3077-3088.
[54]. Shafiei, B., Haschke, M., & Shahabpour, J. (2009). Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44, 265-283.
[55]. Dorani, M., & Moradian, A. (2007). Geochemical and tectonomagmatic investigation of gabbros in southwest of Shahr-Babak, Kerman Province. Iran Soc Cryst Mineral, 86, 193-210.
[56]. Hezarkhani, A. (2006). Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit, Iran: evidence from fluid inclusions. Journal of Asian Earth Sciences, 28(4-6), 409-422.
[57]. Hezarkhani, A. (2009). Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions. Journal of Geochemical Exploration, 101(3), 254-264.
[58]. Afzal, P., Khakzad, A., Moarefvand, P., Omran, N. R., Esfandiari, B., & Alghalandis, Y. F. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104(1-2), 34-46.
[60]. Sepahi, A. A., Ghoreishvandi, H., Maanijou, M., Maruoka, T., Vahidpour, H., 2020. Geochemical description and sulfur isotope data for Shahrak intrusive body and related Fe‐mineralization (east Takab), northwest Iran. Island Arc, 29(1), e12367.
[61]. Geological survey of Iran, 1972. www.ngdi.ir
[62]. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14(1), 45-58.
[63]. Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis. (2014). Grey wolf optimizer. Advances in engineering software 69: 46-61.