Document Type : Original Research Paper

Authors

School of Mining, College of Engineering, University of Tehran, Tehran, Iran

Abstract

The important aspects of this study are to estimate the mechanical parameters of reservoir rock including Uniaxial Compressive Strength (UCS) and friction (FR) angle using well log data. The aim of this research is to estimate the UCS and FR angle (φ) using new deep learning (DL) methods including Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and CNN + LSTM (CL) by well log and core test data of one Iranian hydrocarbon field. As only 12 UCS and 6 FR core tests of single well in this field were available, they were firstly calculated, and then generalized to other depths using two newly derived equations and relevant logs. Next, the effective input logs' data for predicting these parameters have been selected by an auto-encoder DL method, and finally, the values of UCS and φ angle were predicted by the MLP, LSTM, CNN, and CL networks. The efficiency of these four prediction models was then evaluated using a blind dataset, and a range of statistical measures applied to training, testing, and blind datasets. Results show that all four models achieve satisfactory prediction accuracy. However, the CL model outperformed the others, yielding the lowest RMSE of 1.0052 and the highest R² of 0.9983 for UCS prediction, along with an RMSE of 0.0201 and R² of 0.9917 for φ angle prediction on the blind dataset. These findings highlight the high accuracy of deep learning algorithms, particularly the CL algorithm, which demonstrates superior precision compared to the MLP method.

Keywords

Main Subjects