[1] Cargill, J. S., & Shakoor, A. (1990, December). Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 27, No. 6, pp. 495-503). Pergamon.
[2] Tuğrul, A., & Zarif, I. H. (1999). Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engineering geology, 51(4), 303-317.
[3] Karakus, M., & Tutmez, B. (2006). Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock mechanics and rock engineering, 39, 45-57.
[4] Yagiz, S. (2011). P-wave velocity test for assessment of geotechnical properties of some rock materials. Bulletin of Materials Science, 34, 947-953.
[5] Singh, R., Vishal, V., Singh, T. N., & Ranjith, P. G. (2013). A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks. Neural Computing and Applications, 23, 499-506.
[6] Aladejare, A. E. (2020). Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests. Journal of Rock Mechanics and Geotechnical Engineering, 12(2), 256-268.
[7] Hazbeh, O., Rajabi, M., Tabasi, S., Lajmorak, S., Ghorbani, H., Radwan, A. E., & Molaei, O. (2024). Determination and investigation of shear wave velocity based on one deep/machine learning technique. Alexandria Engineering Journal, 92, 358-369.
[8] Mollaei, F., Moradzadeh, A., & Mohebian, R. (2024). Estimation brittleness index in carbonate environments using log and lithology data and deep learning techniques. Italian journal of engineering geology and environment, (1), 49-66.
[9] Mollaei, F., Moradzadeh, A., & Mohebian, R. (2024). Novel approaches in geomechanical parameter estimation using machine learning methods and conventional well logs. Geosystem Engineering, 27(5), 252-277.
[10] Gokceoglu, C., & Zorlu, K. (2004). A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Engineering Applications of Artificial Intelligence, 17(1), 61-72.
[11] Yilmaz, I., & Yuksek, A. G. (2008). An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mechanics and Rock Engineering, 41(5), 781-795.
[12] Tiryaki, B. (2008). Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees. Engineering Geology, 99(1-2), 51-60.
[13] Sarkar, K., Tiwary, A., & Singh, T. N. (2010). Estimation of strength parameters of rock using artificial neural networks. Bulletin of engineering geology and the environment, 69, 599-606.
[14] Dehghan, S., Sattari, G. H., Chelgani, S. C., & Aliabadi, M. A. (2010). Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Mining Science and Technology (China), 20(1), 41-46.
[15] Manouchehrian, A., Sharifzadeh, M., & Moghadam, R. H. (2012). Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics. International Journal of Mining Science and Technology, 22(2), 229-236.
[16] Rabbani, E., Sharif, F., Koolivand Salooki, M., & Moradzadeh, A. (2012). Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties. International journal of rock mechanics and mining sciences, 56, 100-111.
[17] Singh, T. N., & Verma, A. K. (2012). Comparative analysis of intelligent algorithms to correlate strength and petrographic properties of some schistose rocks. Engineering with Computers, 28, 1-12.
[18] Yesiloglu-Gultekin, N., Gokceoglu, C., & Sezer, E. A. (2013). Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. International Journal of Rock Mechanics and Mining Sciences, 62, 113-122.
[19] Majdi, A., & Rezaei, M. (2013). Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network. Neural Computing and Applications, 23, 381-389.
[20] Mishra, D. A., & Basu, A. (2013). Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Engineering Geology, 160, 54-68.
[21] Rezaei, M., Majdi, A., & Monjezi, M. (2014). An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Computing and Applications, 24, 233-241.
[22] Mohamad, E. T., Jahed Armaghani, D., Momeni, E., & Alavi Nezhad Khalil Abad, S. V. (2015). Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bulletin of Engineering Geology and the Environment, 74, 745-757.
[23] Armaghani, D. J., Safari, V., Fahimifar, A., Mohd Amin, M. F., Monjezi, M., & Mohammadi, M. A. (2018). Uniaxial compressive strength prediction through a new technique based on gene expression programming. Neural Computing and Applications, 30, 3523-3532.
[24] Saedi, B., Mohammadi, S. D., & Shahbazi, H. (2018). Prediction of uniaxial compressive strength and elastic modulus of migmatites using various modeling techniques. Arabian Journal of Geosciences, 11, 1-14.
[25] Rezaei, M., & Asadizadeh, M. (2020). Predicting unconfined compressive strength of intact rock using new hybrid intelligent models. Journal of Mining and Environment, 11(1), 231-246.
[26] Wang, M., & Wan, W. (2019). A new empirical formula for evaluating uniaxial compressive strength using the Schmidt hammer test. International Journal of Rock Mechanics and Mining Sciences, 123, 104094.
[27] Fattahi, H. (2020). A new method for forecasting uniaxial compressive strength of weak rocks. Journal of Mining and Environment, 11(2), 505-515.
[28] Hassan, M. Y., & Arman, H. (2022). Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks. Scientific reports, 12(1), 20969.
[29] Dadhich, S., Sharma, J. K., & Madhira, M. (2022). Prediction of uniaxial compressive strength of rock using machine learning. Journal of The Institution of Engineers (India): Series A, 103(4), 1209-1224.
[30] Afolagboye, L.O., Ajayi, D.E. and Afolabi, I.O. (2023). Machine learning models for predicting unconfined compressive strength: A case study for Precambrian basement complex rocks from Ado-Ekiti, Southwestern Nigeria, Scientific African.
[30] Afolagboye, L. O., Ajayi, D. E., & Afolabi, I. O. (2023). Machine learning models for predicting unconfined compressive strength: A case study for Precambrian basement complex rocks from Ado-Ekiti, Southwestern Nigeria. Scientific African, 20, e01715.
[31] Ibrahim, A. F., Hiba, M., Elkatatny, S., & Ali, A. (2024). Estimation of tensile and uniaxial compressive strength of carbonate rocks from well-logging data: artificial intelligence approach. Journal of Petroleum Exploration and Production Technology, 14(1), 317-329.
[32] Alloush, R.M., Elkatatny, S.M., Mahmoud, M.A., Moussa, T.M., Ali, A.Z. and Abdulraheem, A. (2017). Estimation of Geomechanical Failure parameter from well logs using artificial intelligence techniques, SPE.
[32] Alloush, R. M., Elkatatny, S. M., Mahmoud, M. A., Moussa, T. M., Ali, A. Z., & Abdulraheem, A. (2017). Estimation of geomechanical failure parameters from well logs using artificial intelligence techniques. In SPE Kuwait Oil and Gas Show and Conference (p. D031S010R002). SPE.
[33] Pham, T. A., Tran, V. Q., & Vu, H. L. (2021). Evolution of deep neural network architecture using particle swarm optimization to improve the performance in determining the friction angle of soil. Mathematical Problems in Engineering, 2021(1), 5570945.
[34] Hiba, M., Ibrahim, A. F., Elkatatny, S., & Ali, A. (2022). Prediction of cohesion and friction angle from well-logging data using decision tree and random forest. Arabian Journal of Geosciences, 15(1), 26.
[35] Faraj, A. K., Abdul Hussein, H. A. H., & Abed Al-Hasnawi, A. N. (2022). Estimation of Internal Friction Angle for The Third Section in Zubair Oil Field: A Comparison Study. Iraqi Journal of Oil and Gas Research (IJOGR), 2(2), 102-111.
[36] Shahani, N. M., Ullah, B., Shah, K. S., Hassan, F. U., Ali, R., Elkotb, M. A., ... & Tag-Eldin, E. M. (2022). Predicting angle of internal friction and cohesion of rocks based on machine learning algorithms. Mathematics, 10(20), 3875.
[37] Nguyen, T., Shiau, J., & Ly, D. K. (2024). Enhanced earth pressure determination with negative wall-soil friction using soft computing. Computers and Geotechnics, 167, 106086.
[38] Alavi, A.H., Gandomi, A.H., Mollahassani, A., Akbar Heshmati, A., & Rashed, A. (2010). Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. Journal of Plant Nutrition and Soil Science, 173(3), 368-379.
[39] Phyo, P. P., & Byun, Y. C. (2021). Hybrid ensemble deep learning-based approach for time series energy prediction. Symmetry, 13(10), 1942.
[40] Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Comput. 9 (8), 1735–1780.
[41] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222-2232.
[42] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48.
[43] Lecun, Y., Bottou, L., Bengio, L. & Haffner, P. (1998). Gradient -based learning applied to document recognition", Proceedings of the IEEE, 86,(11), 2278 –2324.
[44] Anemangely, M., Ramezanzadeh, A., Amiri, H., & Hoseinpour, S. A. (2019). Machine learning technique for the prediction of shear wave velocity using petrophysical logs. Journal of Petroleum Science and Engineering, 174, 306-327.
[45] Kingm, D.P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. https://arxiv. org/abs/1412.6980.
[46] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7), 2121–2159.
[47] Tieleman, T. & Hinton, G. (2012). Lecture 6.5‐rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 26-30.
[48] Christaras, B. (1997). Landslides in iliolitic and marly formations. Examples from north-westem Greece. Engineering Geology, 47(1-2), 57-69.
[49] Plumb, R. A. (1994). Influence of composition and texture on the failure properties of clastic rocks. In SPE/ISRM Rock Mechanics in Petroleum Engineering (pp. SPE-28022). SPE.
[50] Xu, B., Tan, Y., Sun, W., Ma, T., Liu, H., & Wang, D. (2023). Study on the prediction of the uniaxial compressive strength of rock based on the SSA-XGBoost model. Sustainability 15, 5201.
[51]
Kochukrishnan, S.,
Krishnamurthy, P., Yuvarajan, D., &
Kaliappan, N. (2024). Comprehensive study on the Python-based regression machine learning models for prediction of uniaxial compressive strength using multiple parameters in Charnockite rocks.
Scientific Reports.
[52] Zhao, J., Li, D., Jiang, J., & Luo, P. (2024). Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms. CMES-Computer Modeling in Engineering & Sciences, 140(1).
[53] Daniel, C., Yin, X., Huang, X., Busari, J. A., Daniel, A. I., Yu, H., & Pan, Y. (2024). Bayesian optimization-enhanced ensemble learning for the uniaxial compressive strength prediction of natural rock and its application. Geohazard Mechanics, 2(3), 197-215.
[54] Niu, L., Cui, Q., Luo, J., Huang, H., & Zhang, J. (2024). Unconfined compressive strength prediction of rock materials based on machine learning. Journal of Engineering and Applied Science, 71(1), 137.
[55] Kalabarige, L. R., Sridhar, J., Subbaram, S., Prasath, P., & Gobinath, R. (2024). Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts. Advances in Civil Engineering, 2024(1), 7844854.
[56] Yasar, E., & Erdogan, Y. (2004). Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences, 41(5), 871-875.
[57] Tercan, A. E., & Ozcelik, Y. I. L. M. A. Z. (2006). Canonical ridge correlation of mechanical and engineering index properties. International Journal of Rock Mechanics and Mining Sciences, 43(1), 58-65.
[58] Khanlari, G. R., Heidari, M., Momeni, A. A., & Abdilor, Y. (2012). Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Engineering Geology, 131, 11-18.
[59] Iyeke, S. D., Eze, E. O., Ehiorobo, J. O., & Osuji, S. O. (2016). Estimation of shear strength parameters of lateritic soils using artificial neural network. Nigerian Journal of Technology, 35(2), 260-269.
[60] Mohammadi, M., Fatemi Aghda, S. M., Talkhablou, M., & Cheshomi, A. (2022). Prediction of the shear strength parameters from easily-available soil properties by means of multivariate regression and artificial neural network methods. Geomechanics and Geoengineering, 17(2), 442-454.