[1]. M. H. Jalalian, R. Bagherpour, & M. Khoshouei. (2023). Environmentally sustainable mining in quarries to reduce waste production and loss of resources using the developed optimization algorithm. In Sci Rep (2023/12/14 ed., Vol. 13, pp. 22183).
[2]. L. Liang, S. Li, K. Lan, J. Wang, & R. Yu. (2023). Fixed-Diamond Abrasive Wire-Saw Cutting Force Modeling Based on Changes in Contact Arc Lengths. In Micromachines (Basel) (2023/06/28 ed., Vol. 14).
[3]. M. M. Hejazi & F. M. Saradj. (2014). Persian architectural heritage: structure. In: WIT Press.
[4]. P. Schmidt, I. Pappas, G. Porraz, C. Berthold, & K. G. Nickel. (2024). The driving force behind tool-stone selection in the African Middle Stone Age. In Proc Natl Acad Sci U S A (2024/02/26 ed., Vol. 121, pp. e2318560121).
[5]. A. Aryafar, R. Mikaeil, & M. Ataei. (2010). Selection of an appropriate method to extract the structural stones using TOPSIS multi-criteria method. In Journal of Applied Geology (Vol. 6).
[6]. D. E. Goldberg. (1983). Computer-aided gas pipeline operation using genetic algorithms and rule learning. In): University of Michigan.
[7]. A. Afradi, I. Alavi, & M. Moslemi. (2021). Selecting the most suitable method for extracting construction materials in Iran through the fuzzy multi-attribute decision-making model. In Journal of the Institution of Engineers (india): Series D (Vol. 102, pp. 113-123).
[8]. R. J. Raether, R. G. Robison, & D. A. Summers. (1983). Use of high pressure water jets for cutting granite. In.
[9]. Y. Ozcelik, E. Polat, F. Bayram, 7 A. Ay. (2004). Investigation of the effects of textural properties on marble cutting with diamond wire. In International Journal of Rock Mechanics and Mining Sciences (Vol. 41, pp. 228-234).
[10]. Y. Ozcelik. (1999). Investigation of the working conditions of diamond wire cutting machines in marble industry. In): PhD Thesis, Hacettepe University, Ankara (in Turkish).
[11]. R. G. K. Morrison. (1976). A philosophy of ground control: A bridge between theory and practice. In: Department of Mining and Metallurgical Engineering, McGill University.
[12]. S. Boshkov 7 F. Wright. (1973). Basic and parametric criteria in the selection, design and development of underground mining systems. In SME mining engineering handbook (Vol. 1, pp. 12.2-12.13).
[13]. H. Hartman & J. Mutmansky. (1987). Introductory Mining Engineering, John Wiley & Sons. In New Jersey.
[14]. H. L. Hartman et al. (1992). SME mining engineering handbook. In (Vol. 2): Society for Mining, Metallurgy, & Exploration Denver.
[15]. D. H. Laubscher. (1981). Selection of mass underground mining methods. In Design and operation of caving and sublevel stoping mines (pp. 23-38).
[16]. L. Miller-Tait, R. Panalkis, & R. Poulin. (1995). UBC mining method selection. In Proceeding of the Mine Planning and Equipment Selection Symposium (pp. 163-168).
[17]. T.-Y. Chen & C.-Y. Tsao. (2008). The interval-valued fuzzy TOPSIS method and experimental analysis. In Fuzzy sets and systems (Vol. 159, pp. 1410-1428).
[18]. Z. Yue. (2011). An extended TOPSIS for determining weights of decision makers with interval numbers. In Knowledge-based systems (Vol. 24, pp. 146-153).
[19]. D. E. Goldberg. (1987). Computer-aided pipeline operation using genetic algorithms and rule learning. Part II: Rule learning control of a pipeline under normal and abnormal conditions. In Engineering with Computers (Vol. 3, pp. 47-58).
[20]. T. Liedke & M. Kuna. (2011). A macroscopic mechanical model of the wire sawing process. In International Journal of Machine Tools and Manufacture (Vol. 51, pp. 711-720).
[21]. T. C. Palathra. (2008). Process modeling of a wire saw operation. In: University of Maryland, College Park.
[22]. N. Gustafsson. (2011). Wire cutting as a complement to drill and blast in vibration sensitive environments. In).
[23]. J.-H. Lee, S.-K. Ahn, K.-C. Lee, C.-S. Bang, & M. Sagong. (2015). Study on a wire saw rock cutting model for tunnel excavation and cutting performance improvement. In Transactions of the Korean Society of Mechanical Engineers A (Vol. 39, pp. 1069-1077).
[24]. T. K. Chatterjee, R. Chatterjee, & S. Singh. (2005). Classification of black decorative stones from Warangal District, Andhra Pradesh, India. In Bulletin of Engineering Geology and the Environment (Vol. 64, pp. 167-173).
[25]. S. Jain & S. Rathore. (2009). Role of cut size area on the performance of diamond wire saw machine in quarrying of marble. In International Journal of Mining, Reclamation and Environment (Vol. 23, pp. 79-91).
[26]. A. Ersoy & U. Atıcı. (2004). Performance characteristics of circular diamond saws in cutting different types of rocks. In Diamond and Related Materials (Vol. 13, pp. 22-37).
[27]. S. Almasi, R. Bagherpour, R. Mikaeil, & A. Khademian. (2015). Influence of cutting wire tension on travertine cutting rate. In 24th international mining congress and exhibition of turkey (pp. 1096-1102).
[28]. R. Mikaeil, Y. Ozcelik, M. Ataei, & S. Shaffiee Haghshenas. (2019). Application of harmony search algorithm to evaluate performance of diamond wire saw. In Journal of Mining and Environment (Vol. 10, pp. 27-36).
[29]. Y. Ozcelik & E. Yilmazkaya. (2011). The effect of the rock anisotropy on the efficiency of diamond wire cutting machines. In International Journal of Rock Mechanics and Mining Sciences (Vol. 48, pp. 626-636).
[30]. J.-H. Lee, S.-K. Ahn, K.-C. Lee, C.-S. Bang, J.-H. Cho, & M. Sagong. (2017). Wire saw cutting model development and performance investigation for vibration reduced tunnel excavation. In Tunnelling and Underground Space Technology (Vol. 63, pp. 144-153).
[31]. M.-T. Hamzaban, H. Memarian, & J. Rostami. (2014). Continuous monitoring of pin tip wear and penetration into rock surface using a new Cerchar abrasivity testing device. In Rock mechanics and rock engineering (Vol. 47, pp. 689-701).
[32]. A. Ersoy, S. Buyuksagic, & U. Atici. (2005). Wear characteristics of circular diamond saws in the cutting of different hard abrasive rocks. In Wear (Vol. 258, pp. 1422-1436).
[33]. X. Han, L. Xue, & J. Xu. (2023). Influence mechanism of polycrystalline diamond compact bit temperature rise based on thermo-fluid-solid coupling. In Sci Prog (2023/12/18 ed., Vol. 106, pp. 368504231214704).
[34]. Z. Yang, H. Huang, X. Liao, Z. Lai, Z. Xu, & Y. Zhao. (2024). Wire Bow In Situ Measurement for Monitoring the Evolution of Sawing Capability of Diamond Wire Saw during Slicing Sapphire. In Materials (Basel) (2024/05/11 ed., Vol. 17).
[35]. A. Sariisik & G. Sariisik. (2010). Efficiency analysis of armed-chained cutting machines in block production in travertine quarries. In Journal of the Southern African Institute of Mining and Metallurgy (Vol. 110, pp. 473-480).
[36]. E. Özkan, G. Sarıışık, & S. Ceylan. (2015). Application and productivity analysis of new channel opening method in natural stone quarries with diamond wire cutting machine. In Arabian journal of geosciences (Vol. 8, pp. 1089-1098).
[37]. Z. Dong, C. Zhang, Z. Liu, Y. Zhao, K. Xing, & W. Guo. (2023). A Wire Bow Model of Diamond Wire Sawing with Asymmetric Arc Hypothesis. In Micromachines (Basel) (2023/05/27 ed., Vol. 14).
[38]. L. A. Zadeh, G. J. Klir, & B. Yuan. (1996). Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers. In (Vol. 6): World Scientific.
[39]. G. Haseli et al. (2024). An extension of the best-worst method based on the spherical fuzzy sets for multi-criteria decision-making. In Granul Comput (2024/04/08 ed., Vol. 9, pp. 40).
[40]. P. J. Van Laarhoven & W. Pedrycz. (1983). A fuzzy extension of Saaty's priority theory. In Fuzzy sets and Systems (Vol. 11, pp. 229-241).
[41]. D.-Y. Chang. (1996). Applications of the extent analysis method on fuzzy AHP. In European journal of operational research (Vol. 95, pp. 649-655).
[42]. I. Alavi, A. Akbari, & H. Alinejad-Rokny. (2012). Plant type selection for reclamation of sarcheshmeh copper mine by fuzzy-TOPSIS Method. In Advanced Engineering Technology and Application (Vol. 1, pp. 9-18).
[43]. I. Alavi, D. Akbari, M. Ataei, & H. Kiadaliri. (2011). A comparison Fuzzy TOPSIS method and Fuzzy AHP method for native plant type selection and implant (Case Study: Sarcheshmeh copper mine). In.
[44]. X. Ru & Z. Lin. (2021). Genetic Algorithm Embedded with a Search Space Dimension Reduction Scheme for Efficient Peptide Structure Predictions. In J Phys Chem B (2021/04/09 ed., Vol. 125, pp. 3824-3829).