[1]. Dalvand, M., & Falahat, R. (2021). A new rock physics model to estimate shear velocity log, Journal of Petroleum Science and Engineering, 196, 107697.
[2]. Anemangely, M., Ramezanzadeh, A., Amiri, H., & Hoseinpour, S. A. (2019). Machine learning technique for the prediction of shear wave velocity using petrophysical logs. Journal of Petroleum Science and Engineering, 174, 306-327.
[3]. Mehrad, M., Ramezanzadeh, A., Bajolvand, M., & Hajsaeedi, M. R., (2022). Estimating shear wave velocity in carbonate reservoirs from petrophysical logs using intelligent algorithms. Journal of Petroleum Science and Engineering, 212, 110254.
[4]. Pickett, G.R., (1963). Acoustic Character Logs and Their Applications in Formation Evaluation. Journal of Petroleum Technology, 15, 659-667.
[5]. Castagna, J. P., Batzle, M. L., Kan, T. K., & Backus, M. M. (1993). Rock physics—The link between rock properties and AVO response. Offset-dependent reflectivity—Theory and practice of AVO analysis: SEG, 8, 135-171.
[6]. Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth's crust. Bulletin of the seismological Society of America, 95(6), 2081-2092.
[7]. Miah, M. I. (2021). Improved prediction of shear wave velocity for clastic sedimentary rocks using hybrid model with core data. Journal of Rock Mechanics and Geotechnical Engineering, 13(6), 1466-1477.
[8]. Khatibi, S., & Aghajanpour, A. (2020). Machine learning: A useful tool in geomechanical studies, a case study from an offshore gas field. Energies, 13(14), 3528.
[9]. Oloruntobi, O., Onalo, D., Adedigba, S., James, L., Chunduru, R., & Butt, S. (2019). Data-driven shear wave velocity prediction model for siliciclastic rocks. Journal of Petroleum Science and Engineering, 183, 106293.
[10]. Oloruntobi, O., & Butt, S. (2020). The shear-wave velocity prediction for sedimentary rocks. Journal of Natural Gas Science and Engineering, 76, 103084.
[11]. Olayiwola, T., & Sanuade, O. A. (2021). A data-driven approach to predict compressional and shear wave velocities in reservoir rocks. Petroleum, 7(2), 199-208.
[12]. Azadpour, M., Saberi, M. R., Javaherian, A., & Shabani, M. (2020). Rock physics model-based prediction of shear wave velocity utilizing machine learning technique for a carbonate reservoir, southwest Iran. Journal of Petroleum Science and Engineering, 195, 107864.
[13]. Anemangely, M., Ramezanzadeh, A., & Tokhmechi, B. (2017). Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: A case study from Ab-Teymour Oilfield. Journal of Natural Gas Science and Engineering, 38, 373-387.
[14]. Maleki, S., Moradzadeh, A., Riabi, R. G., Gholami, R., & Sadeghzadeh, F. (2014). Prediction of shear wave velocity using empirical correlations and artificial intelligence methods. NRIAG Journal of Astronomy and Geophysics, 3(1), 70-81.
[15]. Bagheripour, P., Gholami, A., Asoodeh, M., & Vaezzadeh-Asadi, M. (2015). Support vector regression based determination of shear wave velocity. Journal of Petroleum Science and Engineering, 125, 95-99.
[16]. Sabah, M., Talebkeikhah, M., Wood, D. A., Khosravanian, R., Anemangely, M., & Younesi, A. (2019). A machine learning approach to predict drilling rate using petrophysical and mud logging data. Earth Science Informatics, 12, 319-339.
[17]. Mehrad, M., Bajolvand, M., Ramezanzadeh, A., & Neycharan, J. G. (2020). Developing a new rigorous drilling rate prediction model using a machine learning technique. Journal of Petroleum Science and Engineering, 192, 107338.
[18]. Bajolvand, M., Ramezanzadeh, A., Mehrad, M., & Roohi, A. (2022). Optimization of controllable drilling parameters using a novel geomechanics-based workflow. Journal of Petroleum Science and Engineering, 218, 111004.
[19]. Wang, P., & Peng, S. (2019). On a new method of estimating shear wave velocity from conventional well logs. Journal of Petroleum Science and Engineering, 180, 105-123.
[20]. Akhundi, H., Ghafoori, M., & Lashkaripour, G. R. (2014). Prediction of shear wave velocity using artificial neural network technique, multiple regression and petrophysical data: A case study in Asmari reservoir (SW Iran). Open Journal of Geology, 2014.
[21]. Rezaee, M. R., Ilkhchi, A. K., & Barabadi, gracias parA. (2007). Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia. Journal of Petroleum Science and Engineering, 55(3-4), 201-212.
[22]. Rajabi, M., Hazbeh, O., Davoodi, S., Wood, D. A., Tehrani, P. S., Ghorbani, H., ... & Radwan, A. E. (2023). Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms. Journal of Petroleum Exploration and Production Technology, 13(1), 19-42.
[23]. Wang, J., Cao, J., & Yuan, S. (2020). Shear wave velocity prediction based on adaptive particle swarm optimization optimized recurrent neural network. Journal of Petroleum Science and Engineering, 194, 107466.
[24]. Jeong, J., Park, E., Emelyanova, I., Pervukhina, M., Esteban, L., & Yun, S. T. (2021). Application of conditional generative model for sonic log estimation considering measurement uncertainty. Journal of Petroleum Science and Engineering, 196, 108028.
[25]. Zhang, D., Yuntian, C. H. E. N., & Jin, M. E. N. G. (2018). Synthetic well logs generation via recurrent neural networks. Petroleum Exploration and Development, 45(4), 629-639.
[26]. Pham, N., & Naeini, E. Z. (2019, June). Missing well log prediction using deep recurrent neural networks. In 81st EAGE Conference and Exhibition 2019 (Vol. 2019, No. 1, pp. 1-5). European Association of Geoscientists & Engineers.
[27]. Maletic, J. I., & Marcus, A. (2005). Data cleansing. Data mining and knowledge discovery handbook, 21-36.
[28]. Wu, X. (1996). Knowledge acquisition from databases. Ablex Publishing Corp.
[29]. Garćia, L. P. F., de Carvalho, A. C., & Lorena, A. C. (2013). Noisy data set identification. In Hybrid Artificial Intelligent Systems: 8th International Conference, HAIS 2013, Salamanca, Spain, September 11-13, 2013. Proceedings 8 (pp. 629-638). Springer Berlin Heidelberg.
[30]. Lorena, A. C., & de Carvalho, A. C. (2004). Evaluation of noise reduction techniques in the splice junction recognition problem. Genetics and Molecular Biology, 27, 665-672.
[31]. Tunkiel, A. T., Sui, D., & Wiktorski, T. (2022). Impact of data pre-processing techniques on recurrent neural network performance in context of real-time drilling logs in an automated prediction framework. Journal of Petroleum Science and Engineering, 208, 109760.
[32]. Matinkia, M., Sheykhinasab, A., Shojaei, S., Vojdani Tazeh Kand, A., Elmi, A., Bajolvand, M., & Mehrad, M. (2022). Developing a new model for drilling rate of penetration prediction using convolutional neural network. Arabian Journal for Science and Engineering, 47(9), 11953-11985.
[33]. Matinkia, M., Amraeiniya, A., Behboud, M. M., Mehrad, M., Bajolvand, M., Gandomgoun, M. H., & Gandomgoun, M. (2022). A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network. Journal of Petroleum Science and Engineering, 211, 110156.
[34]. Sabah, M., Mehrad, M., Ashrafi, S. B., Wood, D. A., & Fathi, S. (2021). Hybrid machine learning algorithms to enhance lost-circulation prediction and management in the Marun oil field. Journal of Petroleum Science and Engineering, 198, 108125.
[35]. Elkatatny, S. (2019). Development of a new rate of penetration model using self-adaptive differential evolution-artificial neural network. Arabian Journal of Geosciences, 12, 1-10.
[36]. Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
[37]. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152).
[38]. Awad, M., & Khanna, R. (2015). Support vector regression in efficient learning machines (pp. 67–80). Apress, Berkeley, CA.
[39]. Zhang, F., & O'Donnell, L. J. (2020). Support vector regression. In Machine learning (pp. 123-140). Academic Press.
[40]. Kuss, M. (2006). Gaussian process models for robust regression, classification, and reinforcement learning (Doctoral dissertation, echnische Universität Darmstadt Darmstadt, Germany).
[41]. Demuth, H. B., Beale, M. H., De Jess, O., & Hagan, M. T. (2014). Neural network design. Martin Hagan.
[42]. Haykin, S., & Network, N. (2004). A comprehensive foundation. Neural networks, 2(2004), 41.
[43]. Nebauer, C. (1998). Evaluation of convolutional neural networks for visual recognition. IEEE transactions on neural networks, 9(4), 685-696.
[44]. Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018). Conceptual understanding of convolutional neural network-a deep learning approach. Procedia computer science, 132, 679-688.
[45]. Subasi, A. (2020). Practical machine learning for data analysis using python. Academic Press.
[46]. Mandic, D. P., & Chambers, J. (2001). Recurrent neural networks for prediction: learning algorithms, architectures and stability. John Wiley & Sons, Inc.
[47]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[48]. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
[49]. Hamad, Z., & Abdulrahman, I. (2022). Deep learning-based load forecasting considering data reshaping using MATLAB\Simulink. International Journal of Energy and Environmental Engineering, 13(2), 853-869.
[50]. Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing: Pearson prentice hall. Upper Saddle River, NJ, 1(376-376), 97.
[51]. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
[52]. Souier, M., Dahane, M., & Maliki, F. (2019). An NSGA-II-based multiobjective approach for real-time routing selection in a flexible manufacturing system under uncertainty and reliability constraints. The International Journal of Advanced Manufacturing Technology, 100, 2813-2829.