Document Type : Original Research Paper

Authors

1 Departamento de Ingeniería de Minería, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile

2 Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Iran

3 School of Earth Sciences & Engineering, Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russia

4 Iranian Central Oil Fields Company (ICOFC), Tehran, Iran

Abstract

Shear Wave Slowness Log (DTSM) is one of the most important petrophysical logs applicable for studying reservoirs, especially geomechanical studying of the oil and gas fields. However, lack of this parameter in wellbore logging can import great sources of uncertainty into geomechanical studies. This study aims to provide solutions for decreasing the uncertainty of geomechanical models with estimation of the DTSM log using the high accurate deep machine learning models. The main idea is using data from offset fields for extending the range of training data and improving the estimation ability and generalizability of machine learning models. For this purpose, petrophysical data from 8 wells of 4 Iranian oil fields were collected. In the first stage, data preprocessing was performed for reducing the effects of wrong data, missing value, noises, and outliers. Then, machine learning (regression learning-based and deep neural network-based) and analytical models implemented for estimating DTSM. The results indicated that the Gated Recurrent Unit (GRU) model with the values of 1.9 and 2.14 for RMSE and 0.99 for R-square had the most exact answers, for training and test data, respectively. Meanwhile, evaluation of the accuracy of the models on the validation well data indicated that GRU model with the values of 2.43 and 0.93 had been the most accurate model for RMSE and R-square, respectively. Accordingly, using a multi-field comprehensive data bank and applying machine learning methods are strongly recommended to estimate the DTSM, for the cases where limited offset data is available.

Keywords

Main Subjects

[1]. Dalvand, M., & Falahat, R. (2021). A new rock physics model to estimate shear velocity log, Journal of Petroleum Science and Engineering, 196, 107697.
[2]. Anemangely, M., Ramezanzadeh, A., Amiri, H., & Hoseinpour, S. A. (2019). Machine learning technique for the prediction of shear wave velocity using petrophysical logs. Journal of Petroleum Science and Engineering174, 306-327.
[3]. Mehrad, M., Ramezanzadeh, A., Bajolvand, M., & Hajsaeedi, M. R., (2022). Estimating shear wave velocity in carbonate reservoirs from petrophysical logs using intelligent algorithms. Journal of Petroleum Science and Engineering, 212, 110254.
[4]. Pickett, G.R., (1963). Acoustic Character Logs and Their Applications in Formation Evaluation. Journal of Petroleum Technology, 15, 659-667.
[5]. Castagna, J. P., Batzle, M. L., Kan, T. K., & Backus, M. M. (1993). Rock physics—The link between rock properties and AVO response. Offset-dependent reflectivity—Theory and practice of AVO analysis: SEG8, 135-171.
[6]. Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth's crust. Bulletin of the seismological Society of America95(6), 2081-2092.
[7]. Miah, M. I. (2021). Improved prediction of shear wave velocity for clastic sedimentary rocks using hybrid model with core data. Journal of Rock Mechanics and Geotechnical Engineering, 13(6), 1466-1477.
[8]. Khatibi, S., & Aghajanpour, A. (2020). Machine learning: A useful tool in geomechanical studies, a case study from an offshore gas field. Energies, 13(14), 3528.
[9]. Oloruntobi, O., Onalo, D., Adedigba, S., James, L., Chunduru, R., & Butt, S. (2019). Data-driven shear wave velocity prediction model for siliciclastic rocks. Journal of Petroleum Science and Engineering183, 106293.
[10]. Oloruntobi, O., & Butt, S. (2020). The shear-wave velocity prediction for sedimentary rocks. Journal of Natural Gas Science and Engineering76, 103084.
[11]. Olayiwola, T., & Sanuade, O. A. (2021). A data-driven approach to predict compressional and shear wave velocities in reservoir rocks. Petroleum7(2), 199-208.
[12]. Azadpour, M., Saberi, M. R., Javaherian, A., & Shabani, M. (2020). Rock physics model-based prediction of shear wave velocity utilizing machine learning technique for a carbonate reservoir, southwest Iran. Journal of Petroleum Science and Engineering195, 107864.
[13]. Anemangely, M., Ramezanzadeh, A., & Tokhmechi, B. (2017). Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: A case study from Ab-Teymour Oilfield. Journal of Natural Gas Science and Engineering38, 373-387.
[14]. Maleki, S., Moradzadeh, A., Riabi, R. G., Gholami, R., & Sadeghzadeh, F. (2014). Prediction of shear wave velocity using empirical correlations and artificial intelligence methods. NRIAG Journal of Astronomy and Geophysics3(1), 70-81.
[15]. Bagheripour, P., Gholami, A., Asoodeh, M., & Vaezzadeh-Asadi, M. (2015). Support vector regression based determination of shear wave velocity. Journal of Petroleum Science and Engineering125, 95-99.
[16]. Sabah, M., Talebkeikhah, M., Wood, D. A., Khosravanian, R., Anemangely, M., & Younesi, A. (2019). A machine learning approach to predict drilling rate using petrophysical and mud logging data. Earth Science Informatics12, 319-339.
[17]. Mehrad, M., Bajolvand, M., Ramezanzadeh, A., & Neycharan, J. G. (2020). Developing a new rigorous drilling rate prediction model using a machine learning technique. Journal of Petroleum Science and Engineering192, 107338.
[18]. Bajolvand, M., Ramezanzadeh, A., Mehrad, M., & Roohi, A. (2022). Optimization of controllable drilling parameters using a novel geomechanics-based workflow. Journal of Petroleum Science and Engineering218, 111004.
[19]. Wang, P., & Peng, S. (2019). On a new method of estimating shear wave velocity from conventional well logs. Journal of Petroleum Science and Engineering180, 105-123.
[20]. Akhundi, H., Ghafoori, M., & Lashkaripour, G. R. (2014). Prediction of shear wave velocity using artificial neural network technique, multiple regression and petrophysical data: A case study in Asmari reservoir (SW Iran). Open Journal of Geology2014.
[21]. Rezaee, M. R., Ilkhchi, A. K., & Barabadi, gracias parA. (2007). Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia. Journal of Petroleum Science and Engineering55(3-4), 201-212.
[22]. Rajabi, M., Hazbeh, O., Davoodi, S., Wood, D. A., Tehrani, P. S., Ghorbani, H., ... & Radwan, A. E. (2023). Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms. Journal of Petroleum Exploration and Production Technology13(1), 19-42.
[23]. Wang, J., Cao, J., & Yuan, S. (2020). Shear wave velocity prediction based on adaptive particle swarm optimization optimized recurrent neural network. Journal of Petroleum Science and Engineering194, 107466.
[24]. Jeong, J., Park, E., Emelyanova, I., Pervukhina, M., Esteban, L., & Yun, S. T. (2021). Application of conditional generative model for sonic log estimation considering measurement uncertainty. Journal of Petroleum Science and Engineering196, 108028.
[25]. Zhang, D., Yuntian, C. H. E. N., & Jin, M. E. N. G. (2018). Synthetic well logs generation via recurrent neural networks. Petroleum Exploration and Development45(4), 629-639.
[26]. Pham, N., & Naeini, E. Z. (2019, June). Missing well log prediction using deep recurrent neural networks. In 81st EAGE Conference and Exhibition 2019 (Vol. 2019, No. 1, pp. 1-5). European Association of Geoscientists & Engineers.
[27]. Maletic, J. I., & Marcus, A. (2005). Data cleansing. Data mining and knowledge discovery handbook, 21-36.
[28]. Wu, X. (1996). Knowledge acquisition from databases. Ablex Publishing Corp.
[29]. Garćia, L. P. F., de Carvalho, A. C., & Lorena, A. C. (2013). Noisy data set identification. In Hybrid Artificial Intelligent Systems: 8th International Conference, HAIS 2013, Salamanca, Spain, September 11-13, 2013. Proceedings 8 (pp. 629-638). Springer Berlin Heidelberg.
[30]. Lorena, A. C., & de Carvalho, A. C. (2004). Evaluation of noise reduction techniques in the splice junction recognition problem. Genetics and Molecular Biology27, 665-672.
[31]. Tunkiel, A. T., Sui, D., & Wiktorski, T. (2022). Impact of data pre-processing techniques on recurrent neural network performance in context of real-time drilling logs in an automated prediction framework. Journal of Petroleum Science and Engineering208, 109760.
[32]. Matinkia, M., Sheykhinasab, A., Shojaei, S., Vojdani Tazeh Kand, A., Elmi, A., Bajolvand, M., & Mehrad, M. (2022). Developing a new model for drilling rate of penetration prediction using convolutional neural network. Arabian Journal for Science and Engineering47(9), 11953-11985.
[33]. Matinkia, M., Amraeiniya, A., Behboud, M. M., Mehrad, M., Bajolvand, M., Gandomgoun, M. H., & Gandomgoun, M. (2022). A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network. Journal of Petroleum Science and Engineering211, 110156.
[34]. Sabah, M., Mehrad, M., Ashrafi, S. B., Wood, D. A., & Fathi, S. (2021). Hybrid machine learning algorithms to enhance lost-circulation prediction and management in the Marun oil field. Journal of Petroleum Science and Engineering198, 108125.
[35]. Elkatatny, S. (2019). Development of a new rate of penetration model using self-adaptive differential evolution-artificial neural network. Arabian Journal of Geosciences12, 1-10.
[36]. Breiman, L. (1996). Bagging predictors. Machine learning24, 123-140.
 [37]. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152).
[38]. Awad, M., & Khanna, R. (2015). Support vector regression in efficient learning machines (pp. 67–80). Apress, Berkeley, CA.
[39]. Zhang, F., & O'Donnell, L. J. (2020). Support vector regression. In Machine learning (pp. 123-140). Academic Press.
[40]. Kuss, M. (2006). Gaussian process models for robust regression, classification, and reinforcement learning (Doctoral dissertation, echnische Universität Darmstadt Darmstadt, Germany).
[41]. Demuth, H. B., Beale, M. H., De Jess, O., & Hagan, M. T. (2014). Neural network design. Martin Hagan.
[42]. Haykin, S., & Network, N. (2004). A comprehensive foundation. Neural networks2(2004), 41.
[43]. Nebauer, C. (1998). Evaluation of convolutional neural networks for visual recognition. IEEE transactions on neural networks9(4), 685-696.
[44]. Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018). Conceptual understanding of convolutional neural network-a deep learning approach. Procedia computer science132, 679-688.
[45]. Subasi, A. (2020). Practical machine learning for data analysis using python. Academic Press.
[46]. Mandic, D. P., & Chambers, J. (2001). Recurrent neural networks for prediction: learning algorithms, architectures and stability. John Wiley & Sons, Inc.
[47]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation9(8), 1735-1780.
[48]. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
[49]. Hamad, Z., & Abdulrahman, I. (2022). Deep learning-based load forecasting considering data reshaping using MATLAB\Simulink. International Journal of Energy and Environmental Engineering13(2), 853-869.
[50]. Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing: Pearson prentice hall. Upper Saddle River, NJ1(376-376), 97.
[51]. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation6(2), 182-197.
[52]. Souier, M., Dahane, M., & Maliki, F. (2019). An NSGA-II-based multiobjective approach for real-time routing selection in a flexible manufacturing system under uncertainty and reliability constraints. The International Journal of Advanced Manufacturing Technology100, 2813-2829.