[1]. Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep learning for anomaly detection: A review. ACM computing surveys (CSUR), 54(2), 1-38.
[2]. Ghannadpour, S. S., Hezarkhani, A., Sharifzadeh, M., & Ghashghaei, F. (2019). Applying a structural multivariate method using the combination of statistical methods for the delineation of geochemical anomalies.
Iranian Journal of Science and Technology, Transactions A: Science, 43, 127-140. doi:
https://doi.org/10.1007/s40995-017-0452-1
[4]. Asghari, O., & Hezarkhani, A. (2005). Geostatistical Modeling And Reserve Estimation Of Choghart Iron Ore Deposit Through Ordinary Kriging Method, IRAN. Paper presented at the In 5-th International Conference SGEM 2005, Iran.
[5]. Soltani-Mohammadi, S., Abbaszadeh, M., Hezarkhani, A., & Carranza, E. J. M. (2021). Uncertainty Analysis of Thermodynamic Variables of Fluid Inclusions: A Deposit-Scale Spatial Exploratory Data Modeling through Fuzzy Kriging.
Natural Resources Research, 1-15. doi:
https://doi.org/10.1007/s11053-021-09969-4
[6]. Ghannadpour, S. S., & Hezarkhani, A. (2022). A new method for determining geochemical anomalies: UN and UA fractal models. International Journal of Mining & Geo-Engineering, 56(2). doi: 10.22059/IJMGE.2021.321818.594907
[7]. Li, X., Yuan, F., Jowitt, S. M., Zhou, K., Wang, J., Zhou, T., Li, Y. (2017). Singularity mapping of fracture fills and its relationship to deep concealed orebodies–a case study of the Shaxi porphyry Cu-Au deposit, China. Geochemistry: Exploration, Environment, Analysis, 17(3), 252-260.
[8]. Mohammadi, N. M., Hezarkhani, A., & Saljooghi, B. S. (2016). Separation of a geochemical anomaly from background by fractal and U-statistic methods, a case study: Khooni district, Central Iran. Geochemistry, 76(4), 491-499.
[9]. Pazand, K., Hezarkhani, A., Ataei, M., & Ghanbari, Y. (2011). Application of multifractal modeling technique in systematic geochemical stream sediment survey to identify copper anomalies: a case study from Ahar, Azarbaijan, Northwest Iran. Geochemistry, 71(4), 397-402.
[10]. Saljooghi, B. S., & Hezarkhani, A. (2015). A new approach to improve permeability prediction of petroleum reservoirs using neural network adaptive wavelet (wavenet).
Journal of Petroleum Science and Engineering, 133, 851-861. doi:
https://doi.org/10.1016/j.petrol.2015.04.002
[11]. Shirazi, A., Hezarkhani, A., Beiranvand Pour, A., Shirazy, A., & Hashim, M. (2022). Neuro-Fuzzy-AHP (NFAHP) technique for copper exploration using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and geological datasets in the Sahlabad mining area, east Iran. Remote Sensing, 14(21), 5562.
[12]. Shirazi, A., Shirazy, A., & Hezarkhani, A. (2024). An Artificial Intelligence based Model for Optimal Exploratory Surveys: Geophysics and Geochemistry: LAMBERT Academic Publishing.
[13]. Shirazy, A., Hezarkhani, A., Timkin, T., & Shirazi, A. (2021). Investigation of magneto-/radio-metric behavior in order to identify an estimator model using K-means clustering and Artificial Neural Network (ANN)(Iron Ore Deposit, Yazd, IRAN). Minerals, 11(12), 1304.
[14]. Tahmasebi, P., & Hezarkhani, A. (2011). Application of a modular feedforward neural network for grade estimation. Natural Resources Research, 20, 25-32.
[15]. Tahmasebi, P., & Hezarkhani, A. (2012). A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Computers & geosciences, 42, 18-27.
[16]. Carranza, E. J. M. (2011). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167-185.
[17]. Cheng, Q., Agterberg, F. P., & Bonham-Carter, G. F. (1996). A spatial analysis method for geochemical anomaly separation.
Journal of Geochemical Exploration, 56(3), 183-195. doi:
https://doi.org/10.1016/S0375-6742(96)00035-0
[18]. Li, Q., & Cheng, Q. (2006). VisualAnomaly: A GIS-based multifractal method for geochemical and geophysical anomaly separation in Walsh domain. Computers & geosciences, 32(5), 663-672.
[19]. Zhang, C., Zuo, R., & Xiong, Y. (2021). Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method.
Applied Geochemistry, 130(104994). doi:
https://doi.org/10.1016/j.apgeochem.2021.104994
[20]. Zhao, J., Chen, S., & Zuo, R. (2016). Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. Journal of Geochemical Exploration, 164, 54-64.
[21]. Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. (2019). Exploration information systems–A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.
[22]. Yousefi, M., Lindsay, M. D., & Kreuzer, O. (2024). Mitigating uncertainties in mineral exploration targeting: Majority voting and confidence index approaches in the context of an exploration information system (EIS). Ore Geology Reviews, 165, 105930.
[23]. Yousefi, M., Nykänen, V., Harris, J., Hronsky, J. M., Kreuzer, O. P., Bertrand, G., & Lindsay, M. (2024). Overcoming survival bias in targeting mineral deposits of the future: Towards null and negative tests of the exploration search space, accounting for lack of visibility. Ore Geology Reviews, 106214.
[24]. Abbaszadeh, M., Khosravi, V., & Pour, A. B. (2024). Comparison of support vector machines (SVMs) and the learning vector quantization (LVQ) techniques for geological domaining: a case study from Darehzar porphyry copper deposit, SE Iran. Earth Science Informatics, 1-16.
[25]. Shabankareh, M., & Hezarkhani, A. (2017). Application of support vector machines for copper potential mapping in Kerman region, Iran. Journal of African Earth Sciences, 128, 116-126.
[26]. Xiong, Y., & Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network. Computers & geosciences, 86, 75-82.
[27]. Zhuo, R., & Xiong, Y. (2018). Big data analytics of identifying geochemical anomalies supported by machine learning methods.
Natural Resources Research, 27, 5-13. doi:
https://doi.org/10.1007/s11053-017-9357-0
[28]. Zuo, R., Xiong, Y., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth-Science Reviews, 192, 1-14.
[29]. Wang, Z., Chen, Z., Ni, J., Liu, H., Chen, H., & Tang, J. (2021). Multi-scale one-class recurrent neural networks for discrete event sequence anomaly detection. Paper presented at the Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining.
[30]. Luo, Z., Zuo, R., Xiong, Y., & Zhou, B. (2023). Metallogenic-factor variational autoencoder for geochemical anomaly detection by ad-hoc and post-hoc interpretability algorithms. Natural Resources Research, 32(3), 835-853.
[31]. Guo, M., & Chen, Y. (2024). A SMOTified-GAN-augmented bagging ensemble model of extreme learning machines for detecting geochemical anomalies associated with mineralization.
Geochemistry(126156). doi:
https://doi.org/10.1016/j.chemer.2024.126156
[32]. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. Advances in neural information processing systems, 30.
[33]. Hong, Y., Hwang, U., Yoo, J., & Yoon, S. (2019). How generative adversarial networks and their variants work: An overview. ACM computing surveys (CSUR), 52(1), 1-43.
[34]. Cenggoro, T. W. (2018). Deep learning for imbalance data classification using class expert generative adversarial network. Procedia Computer Science, 135, 60-67.
[35]. Aghanabati, A. (2004). Geology of Iran. GeoIran Publishing, Tehran.
[36]. Alavi, M. (Cartographer). (1991). Tectonic map of the Middle East, 1:5000000
[37]. Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran.
Canadian journal of earth sciences, 18(2), 210-265. doi:
https://doi.org/10.1139/e81-019
[38]. Eftekharnezhad, J. (1991). Structural separation of Iran in relation to sedimentary basins. Journal of Iranian Petroleum Society, 82, 19-27.
[39]. Nabavi, M. H. (2002). An introduction to the geology of Iran. Tehran, Iran.
[40]. Streeckeisen, A. (1980). Classification and nomenclature of igneous rocks. New Jahrrb.Miner.Agb, 107, 144-214.
[42]. Khankhdani, K. (2006). An Introduction to Metamorphic Petrology. University of Tehran, Tehran.
[43]. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Bengio, Y. (2014). Generative adversarial nets.
Advances in neural information processing systems, 27. doi:
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
[44]. Panigrahi, S., Nanda, A., & Swarnkar, T. (2021). A survey on transfer learning. Paper presented at the Intelligent and Cloud Computing: Proceedings of ICICC 2019, Volume 1.
[45]. Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z., & Azim, M. A. (2022). Transfer learning: a friendly introduction. Journal of Big Data, 9(1), 102.
[46]. Bai, S., Zhao, J., Yu, T., & Shao, Y. (2024). Fusion of Geochemical Data and Remote Sensing Data Based on Convolutional Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 18, 1212-1225. doi:doi: 10.1109/JSTARS.2024.3502634
[47]. Li, H., Li, X., Yuan, F., Jowitt, S. M., Zhang, M., Zhou, J., Wu, B. (2020). Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China.
Applied Geochemistry, 122, 104747. doi:
https://doi.org/10.1016/j.apgeochem.2020.104747
[48]. Wu, B., Li, X., Yuan, F., Li, H., & Zhang, M. (2022). Transfer learning and siamese neural network based identification of geochemical anomalies for mineral exploration: A case study from the CuAu deposit in the NW Junggar area of northern Xinjiang Province, China.
Journal of Geochemical Exploration, 232(106904). doi:
https://doi.org/10.1016/j.gexplo.2021.106904
[49]. Nogueira, A. F. R., Oliveira, H. S., Machado, J. J., & Tavares, J. M. R. (2022). Transformers for urban sound classification—A comprehensive performance evaluation.
Sensors, 22(22), 8874. doi:
https://doi.org/10.3390/s22228874
[50]. Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119-139.
[51]. Matheron, G. (1963). Principles of geostatistics. Economic geology, 58(8), 1246-1266.
[52]. Daya, A. A. (2019). Nonlinear disjunctive kriging for the estimating and modeling of a vein copper deposit. Iranian Journal of Earth Sciences, 11(3), 226-236.
[53]. Keykhay-Hosseinpoor, M., Kohsary, A.-H., Hossein-Morshedy, A., & Porwal, A. (2020). A machine learning-based approach to exploration targeting of porphyry Cu-Au deposits in the Dehsalm district, eastern Iran. Ore Geology Reviews, 116, 103234.
[54]. Riahi, S., Bahroudi, A., Abedi, M., Aslani, S., & Lentz, D. R. (2022). Evidential data integration to produce porphyry Cu prospectivity map, using a combination of knowledge and data‐driven methods. Geophysical Prospecting, 70(2), 421-437.
[55]. Shirmard, H., Farahbakhsh, E., Heidari, E., Beiranvand Pour, A., Pradhan, B., Müller, D., & Chandra, R. (2022). A comparative study of convolutional neural networks and conventional machine learning models for lithological mapping using remote sensing data. Remote Sensing, 14(4), 819.
[56]. Seydi, A., Abedi, M., Bahroudi, A., & Ferdowsi, H. (2024). Geochemical prospectivity of Au mineralization through Concentration-Number fractal modelling and Prediction-Area plot: a case study in the east of Iran. Geopersia, 14(1), 213-229.
[57]. Riahi, S., Abedi, M., & Bahroudi, A. (2023). A hybrid fuzzy ordered weighted averaging method in mineral prospectivity mapping: a case for porphyry Cu exploration in Chahargonbad District, Iran. International Journal of Mining and Geo-Engineering, 57(4), 373-380.
[58]. Ebdali, M., & Hezarkhani, A. (2024a). A comparative study of decision tree and support vector machine methods for gold prospectivity mapping. Mineralia Slovaca, 56, 2.
[59]. Rahimi, N., Kargaranbafghi, F., Shahid, M. R., & Afkhami, S. (2024). Using fuzzy Logic Method and Analytic Hierarchy Process to Mineral Potential Mapping in Janja Exploration Area (South of Nehbandan, Iran). Jordan Journal of Earth & Environmental Sciences, 15(4).
[60]. Ebdali, M., & Hezarkhani, A. (2024b). Comparison of clustering methods in determining gold mineralization anomalies in the Janja area, Iran. Geochemistry: Exploration, Environment, Analysis, 24(4), geochem2024-2029.