[1]. Lerchs, H. and Grossmann, I.F. (1965). Optimum design of open-pit mines. Transactions CIM. LXVIII: 17–24.
[2]. Pana, M.T. (1965). The simulation approach to open pit design. Paper presented at the APCOM Symposium.
[3]. Korobov, S. (1974). Method for determining optimal open pit limits. Rapport Technique EP, 74.
[4]. David, M., Dowd, P.A. and Korobov, S. (1974). Forecasting departure from panning in open pit design and grade control. In 12th Symposium on the application of computers and operaton research in the mineral industries (APCOM) volume 2 (Golden, Colo: Colorado School of Mines). F131-42.
[5]. Dowd, P., and Onur, A. (1992). Optimising open pit design and sequencing. Proceedings 23rd Application of Computer in Mineral Industry. 411-422.
[6]. Dowd, P.A. and Onur, A.H. (1993). Open-pit optimization part 1: optimal open-pit design. Transaction of the Insitution of Mining and Metallurgy (Section A: Mining Industry). 102: A95–104.
[7]. Onur, A.H. and Dowd, P.A. (1993). Open-pit optimization part 2: production scheduling and inclusion of roadways. Transactions of the Institution of Mining and Metallurgy (Section A: Mining Industry). 102: A105–13.
[8]. Laurich, R. and Kennedy, B. (1990). Planning and design of surface mines. Port City Press Baltimore, 465-469.
[9]. Elahi, E., Kakaie, R. and Yousefi, A. (2012). A new algorithm for optimum open pit design: Floating cone method III. Journal of Mining and Environment, 2(2): 118-125.
[10]. Johnson, T.B. (1969). Optimum production scheduling. In Proceedings of the 8th International Symposium on Computers and Operations research, Salt Lake City. 539-562.
[11]. Williams, C.E. (1974). Computerized year-by-year open pit mine scheduling. Trans. Soc. Min. Eng. AIME 256: 45-52.
[12]. Gershon, M.E. (1983). Optimal mine production scheduling: evaluation of large scale mathematical programming approaches. Int. J. Min. Eng. 1 (4): 315-329.
[13]. Dagdelen K. and Johnson, T.B. (1986). Optimum open pit mine production scheduling by Lagrangian parametrization, In Proceeding of the 19th International Symposium on the Application of Computers and Operations Research in the Mineral Industry, Pennsylvania State University, University Park, Pennsylvania. 13: 127-142.
[14]. Ravenscroft, P.J. (1992). Risk analysis for mine planning by conditional simulation. Trans. Inst. Min. Metall. (Sect. A: Min. Ind.). 101: 82-88.
[15]. Dowd, P.A. (1994). Risk assessment in reserve estimation and open-pit planning, Trans. Inst. Min. Metall. (Sect. A: Min. Ind.). 103: 148-154.
[16]. Elevli, B. (1995). Open pit mine design and extraction sequencing by use of OR and AI concept. Int. J. Min. Reclam. Env. 9: 149-153.
[17]. Denby, B. and Schofield, D. (1995). Inclusion of risk assessment in open-pit design and planning. Trans. Inst. Min. Metall. (Sect. A: Min. Ind.). 104: 67-71.
[18]. Tolwinski, B. (1998). Scheduling production for open-pit mines, In Proceedings of the APCOM’98, 19-23.
[19]. Akaike, A. and Dagdelen, K. (1999). A strategic production scheduling method for an open-pit mine, In Proceedings of the 28th Application of Computers and Operation Research in the Mineral Industry, 729-738.
[20]. Whittle, D. (2000). Proteus environment: sensitivity analysis made easy, Whittle North American Strategic Mine Planning Conference, Colorado.
[21]. Johnson, T.B., Dagdelen, K. and Ramazan, S. (2002). Open pit mine scheduling based on fundamental tree algorithm, In Proceeding of the 30th International Symposium on the Application of Computers and Operations Research in the Mineral Industry, SME: Littleton. 147-159.
[22]. Dimitrakopoulos, R., Farrelly, C.T. and Godoy, M. (2002). Moving forward from traditional optimization: grade uncertainty and risk effects in open pit design. Trans. Inst. Mining Metall. A Mining Technol. 111: 82-88.
[23]. Godoy, M. and Dimitrakopoulos, R. (2004). Managing risk and waste mining in long-term production scheduling of open-pit mines. SME Transactions. 316: 43-50.
[24]. Dimitrakopoulos, R. and Ramazan, S. (2004). Uncertainty based production scheduling in open pit mining. SME Transactions. 316: 106-112.
[25]. Ramazan, S. and Dimitrakopoulos, R. (2004). Recent application of operations research in open pit mining. SME Transactions. 316: 73-78.
[26]. Ramazan, S. and Dimitrakopoulos, R. (2004). Traditional and new MIP models for production planning with in-situ grade variability. Int. J. Min. Reclam. Env. 18 (2): 85-98.
[27]. Gholamnejad, J., Osanloo, M. and Karimi, B. (2006). A chance-constrained programming approach for open pit long-term production scheduling in stochastic environments. J.S. Afr. I. Min. Metall. 106: 105-114.
[28]. Gholamnejad, J. and Osanloo, M. (2007). A chance constrained integer programming model for open pit long-term production planning, In Proceedings of the 16th International Symposium on Mine Planning and Equipment Selection (MPES). 359-372.
[29]. Ramazan, S. and Dimitrakopoulos, R. (2007). Stochastic optimization of long-term production scheduling for open pit mines with a new integer programming formulation, Orebody Modelling and Strategic Mine Planning. The Australasian Institute of Mining and Metallurgy. Spectrum Series. 14 (2): 385-392.
[30]. Boland, N., Dumitrescu, I., Froyland, G. and Gleixner, A.M. (2009). LP-based disaggregation approaches to solving the open pit mining production scheduling problem with block processing selectivity. Comput. Oper. Res. 36 (4): 1064-1089.
[31]. Bley, A., Boland, N., Fricke, C. and Froyland, G. (2010). A strengthened formulation and cutting planes for the open pit mine production scheduling problem. Comput. Oper. Res. 37 (9): 1641-1647.
[32]. Kumral, M. (2010). Robust stochastic mine production scheduling. Engineering Optimization. 42 (6): 567-579.
[33]. Lamghari, A. and Dimitrakopoulos, R. (2012). A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty. Eur. J. Oper. Res. 222 (3): 642-652.
[34]. Gholamnejad, J. and Moosavi, E. (2012). A new mathematical programming model for long-term production scheduling considering geological uncertainty. J. S. Afr. I. Min. Metall. 112 (2): 77-81.
[35]. Nanjari, E.L. and Golosinski, T.S. (2013). Optimising open pit mine scheduling taking into consideration time value of money and mining restrictions. Int. J. Min. Reclam. Env. 27 (3): 156-165.
[36]. Sattarvand, J. and Niemann-Delius, C. (2013). A new metaheuristic algorithm for long-term open pit production planning. Archives of Min. Sci. 58 (1): 107-118.
[37]. Goodfellow, R. and Dimitrakopoulos, R. (2013). Algorithmic integration of geological uncertainty in push back designs for complex multi-process open pit mines. Min. Technol. 122 (2): 67-77.
[38]. Dimitrakopoulos, R. and Jewbali, A. (2013). Joint stochastic optimization of short and long term mine production planning: Method and application in a large operating gold mine. IMM Trans. Min. Technol. 122 (2): 110-123.
[39]. Leite, A. and Dimitrakopoulos, R. (2014). Stochastic optimization of mine production scheduling with uncertain ore/metal/waste supply. Int. J. Min. Sci. Technol.
[40]. Moosavi, E., Gholamnejad, J., Ataee-Pour, M. and Khorram, E. (2014). Improvement of Lagrangian relaxation performance for open pit mines constrained long-term production scheduling problem. J. Cent. South Univ. 21: 2848−2856.
[41]. Moosavi, E., Gholamnejad, J., Ataee-Pour, M. and Khorram. E. (2014). A hybrid augmented Lagrangian multiplier method for the open pit mines long-term production scheduling problem optimization. J. Min. Sci. 50: 1047-1060.
[42]. Koushavand, B., Askari-Nasab, H. and Deutsch, C.V. (2014). A linear programming model for long-term mine planning in the presence of grade uncertainty and a stockpile. Int. J. Min. Sci. Technol. 24: 451-459.
[43]. Asad, M.W.A., Dimitrakopoulos, R. and Eldert, J.V. (2014). Stochastic production phase design for an open pit mining complex with multiple processing streams. Eng. Opti. 46 (8): 1139-1152.
[44]. Lamghari, A., Dimitrakopoulos, R. and Ferland, A.J. (2014). A variable neighbourhood descent algorithm for the open-pit mine production scheduling problem with metal uncertainty. J. Oper. Res. Soc. 65: 1305–1314.
[45]. Shishvan, M.S. and Sattarvand, J. (2015). Long term production planning of open pit mines by ant colony optimization. Eur. J. Oper. Res. 240 (3): 825-836.
[46]. Mokhtarian, M. and Sattarvand, J. (2016). An Imperialist Competitive Algorithm for Solving the Production Scheduling Problem in Open Pit Mine. Int. J. Min. Geo-Eng. 50 (1): 131-143.
[47]. Mokhtarian, M. and Sattarvand, J. (2016). Commodity price uncertainty propagation in open-pit mine production planning by Latin hypercube sampling method. J. M. E. 7 (2): 215-227.
[48]. Goodfellow, R. and Dimitrakopoulos, R. (2016). Global optimization of open pit mining complexes with uncertainty. Appl. Soft Comput. 40: 292-304.
[49]. Lamghari, A. and Dimitrakopoulos, R. (2016). Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for reserve uncertainty. Eur. J. Oper. Res. 253 (3): 843-855.
[50]. Lamghari, A. and Dimitrakopoulos, R. (2016). Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty. Eur. J. Oper. Res. 250 (1): 273-290.
[51]. Bakhtavar, E., Jafarpour, A. and Yousefi, S. (2017). Optimal production strategy of bimetallic deposits under technical and economic uncertainties using stochastic chance-constrained programming. J. M. E. 8 (3): 475-485.
[52]. Khan, A. (2018). Long-term production scheduling of open pit mines using particle swarm and bat algorithms under grade uncertainty. J. S. Afr. I. Min. Metall. 118: 361-368.
[53]. Rahimi, E., Moosavi, E., Shirinabadi, R. and Gholinejad, M. (2018). Optimized algorithm in mine production planning, mined material destination, and ultimate pit limit. J. Cent. South Univ. 25 (6): 1475-1488.
[54]. Tahernejad, M.M., Ataei, M. and Khalokakie, R. (2018). A practical approach to open-pit mine planning under price uncertainty using information gap decision theory. J. M. E. 9 (2): 527-537.
[55]. Jelvez, E., Morales, N. and Nancel-Penard, P. (2018). Open-Pit Mine Production Scheduling: Improvements to MineLib Library Problems, In Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection (MPES). 223-232.
[56]. Khan, A. and Asad, M.W.A. (2018). A mathematical programming model for optimal cut-off grade policy in open pit mining operations with multiple processing streams. Int. J. Min. Reclam. Env.
[57]. Alipour, A., Khodaiari, A.A., Jafari, A. and Tavakkoli-Moghaddam, R. (2018). Uncertain production scheduling optimization in open-pit mines and its ellipsoidal robust counterpart. Int. J. Manage. Sci. Eng. Manage.
[58]. Chatterjee, S. and Dimitrakopoulos, R. (2019). Production scheduling under uncertainty of an open-pit mine using Lagrangian relaxation and branch-and- cut algorithm, Int. J. Min. Reclam. Env.
[59]. Dimitrakopoulos, R. and Senécal, R. (2019). Long-term mine production scheduling with multiple processing destinations under mineral supply uncertainty, based on multi-neighbourhood Tabu search. Int. J. Min. Reclam. Env.
[60]. Dimitrakopoulos, R. (1998). Conditional Simulation Algorithms Orebody Uncertainty in Open Pit Optimization. Int. J. Min. Reclam. Env. 12: 173-179.
[61]. Cohen, A.I. and WAN, S.H. (1987). A method for solving the fuel constrained unit commitment problem. IEEE Trans. Power Syst. 2: 608-614.
[62]. Vemuri, S. and Lemonidis, L. (1992). Fuel constrained unit commitment. IEEE Trans. Power Syst. 7(1): 410-415.
[63]. Abdul-Rahman, K.H., Shahidehpour, S.M., Aganagic, M. and Mokhtari, S.A. (1996). Practical resource scheduling with OPF constraints. IEEE Trans. Power Syst. 11(1): 254-259.
[64]. Shiina, T. and Watanabe, I. (2004). Lagrangian relaxation method for price-based unit commitment problem. Eng. Opti. 36 (6): 705–719.
[65.] Pang, X., Gao, L., Pan, Q., Tian, W. and Yu, S. (2017). A novel Lagrangian relaxation level approach for scheduling steelmaking-refining-continuous casting production. J. Cent. South Univ. 24 (2): 467−477.
[66]. Fisher, M.L. (1981). The Lagrangian relaxation method for solving integer programming problems. Manage. Sci. 27 (1): 1−18.
[67]. Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization, IEEE Int. Conf. Neural Networks 1995 (ICANN’95), Perth, Australia. 5. 1942-1948.
[68]. Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory, In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan. Piscataway, NJ: IEEE Service Center. 39-43.
[69] Bergh, F.V.D. and Engelbrecht, A.P. (2002). A New Locally convergent Particle Swarm Optimizer, IEEE conferences on Systems, 3.
[70]. Chunming, Y. and Simon, D. (2005). A new particle swarm optimization technique, In 18th International Conferences System Engineering (ICSEng). 2. 164-169.
[71]. Kennedy, J. and Eberhart, R. (1997). A Discrete Binary Version of the Particle Swarm Algorithm, IEEE International Conference on Computational Cybernetics and Simulation. 5. 4104-4108.
[72]. Garg, H. (2016). A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 274: 292-305.
[73]. Yang, X.S. (2008). Nature-Inspired Metaheuristic Algorithms, Luniver Press, UK.
[74]. Yang, X.S. (2009). Firefly algorithms for multimodal optimization, In: Stochastic Algorithms: Foundations and Applications (Eds O. Watanabe and T. Zeugmann), SAGA2009, Lecture Notes in Computer Science, 5792, Springer-Verlag, Berlin. 169-178.
[75]. Gazi, K. and Passino, K.M. (2004). Stability analysis of social foraging swarms. IEEE Trans. Sys. Man. Cyber. Part B – Cybernetics. 34: 539-557.
[76]. Yang, X.S. (2010). Firefly Algorithm, Stochastic Test Functions and Design Optimisation. Int. J. Bio-Inspired Computation. 2 (2): 78–84.
[77]. Yang, X.S. (2010). A new metaheuristic bat-inspired algorithm, In Proceedings of Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Studies in Computational Intelligence Series. Springer, Berlin/Heidelberg. 284, 65–74.
[78]. Mirjalili, S.A., Mirjalili, S.M. and Yang, X.S. (2014). Binary bat algorithm. Neural Comput. Appl. 25 (3-4): 663-681.
[79]. Yang, X.S. and He, X. (2013). Bat algorithm: literature review and applications. Int. J. Bio-Inspir. Com. 5 (3): 141-149.
[80]. Yang, X.S. (2011). Bat algorithm for multi-objective optimization. Int. J. Bio-Inspir. Com. 3 (5): 267-274.