Document Type: Original Research Paper

Authors

1 Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran

2 Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

10.22044/jme.2020.9619.1876

Abstract

The Dehaj area, located in the southern part of the Urumieh-Dokhtar magmatic belt, is a well-endowed terrain hosting a number of world-class porphyry copper deposits. These deposits are all hosted in an acidic to intermediate volcano-plutonic sequence greatly affected by various types of the hydrothermal alterations, whether argillic, phyllic or propylitic. Although there are a handful of hitherto-discovered porphyry copper deposits in the area, the geological setting of the area suggests the possibility of finding further deposits. The recognition and delineation of the hydrothermal alterations can pave the way for the discovery of further potential zones that possibly host the porphyry copper deposits. The current work proposes a hybrid methodology applied to the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery by combining the application of dimension reduction and fractal techniques to delineate the hydrothermally-altered zones In order to reduce the dimensionality of multi-band ASTER data, Robust Principal Component Analysis (RPCA) was employed to elicit the traces of hydrothermally-related mineral assemblages including illite, sericite, quartz, kaolinite, epidote, and chlorite. Highlighting the existence of the aforementioned minerals, the extracted components require interpretation, i.e. a boundary is required to constraint the hydrothermally affected zones from the rest of the geological units. In order to tackle such a challenge, the authors introduce the concept of value-pixel fractal technique for the extracted principal components. The Prediction-Area (P-A) plot is used for the validation, which shows that the identified alterations correlate with the mineralization. The results obtained are verified by a geological survey, where a number of samples are collected from the delineated zones. The samples are analyzed by the XRD techniques, finding that this work is successful in classifying the hydrothermally-altered zones.

Keywords