Document Type: Original Research Paper

Authors

1 Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran

2 Biotechnology Group, Department of Chemical Engineering, Tarbiat Modarres University, Tehran, Iran

3 Faculty of Engineering, Department of Civil Engineering, Kharazmi University, Tehran, Iran

4 National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

10.22044/jme.2020.10054.1942

Abstract

Indigenous acidophilic bacteria separated from mine-waste can be used in return for the addition of the reagents like sulfuric acid. Among the tailings bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans are of the most-studied ones for the bioleaching and bioremediation of elements. In this work, the isolation and characterization of the mentioned bacteria are studied by a proposed biochemical protocol. The sequential cultivation of the soil bacteria in a series of liquid media and solid culture medium cause the separation of bacteria. A biochemical method is used to characterize the isolated strains of the native bacteria. The changes in the Eh, pH, and culture medium color are checked in order to control the bacterial growth in a 9K liquid medium. At the first step of the sequential cultivation, the amount of nutrient broth is the main factor that affects the complete isolation of Acidithiobacillus bacteria. The trivial dosage of nutrient broth does not lead to the desired proliferation of the bacteria in the tailings soil. 8 g L-1 of the nutrient broth is suitable to increase the initial number of bacteria in the soil significantly. In the next steps, the bacteria are separated from the soil, and pure strains of A. ferrooxidans and A. thiooxidans are isolated using a 9K medium. Final pure strains are achieved during the two steps of streak cultivation of bacteria in the soil medium of nutrient agar.

Keywords

[1]. Piervandi, Z., Khodadadi Darban, A., Mousavi, S.M., Abdollahy, M., Asadollahfardi, G., Funari, V., Dinelli, E., 2019. Minimization of metal sulfides bioleaching from mine wastes into the aquatic environment. Ecotox. Environ. Safe. 182, 109443.

[2]. Ledin, M., Pedersen, K., 1996. The environmental impact of mine wastes-Roles of microorganisms and their significance in treatment of mine wastes. Earth-Sci. Rev. 41, 67-108.

[3]. Piervandi, Z., Khodadadi Darban, A., Mousavi, S.M., Abdollahy, M., Asadollahfardi, G., Funari, V., Dinelli, E., Webster, R.D., Sillanpää, M. 2020. Effect of biogenic jarosite on the bio-immobilization of toxic elements from sulfide tailings. Chemosphere 258, 127288.

[4]. Usui, K., Miyazaki, S., Kaito, C., Sekimizu, K. 2009. Purification of a soil bacteria exotoxin using silkworm toxicity to measure specific activity. Microb. Pathoge. 46, 59–62.

[5]. Okoye, A.U., Chikere, C.B., Okpokwasili, G.C., 2020., Isolation and Characterization of Hexadecane Degrading Bacteria from Oil- polluted soil in Gio Community, Niger Delta, Nigeria. Scientific African 8, e00340.

[6]. Callewaert, R., Holo, H., Devreese, B., van Beeumen, J., Nes, I.F., de Vuyst, L., 1999. Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step method. Microbiology 145, 2559– 2568.

[7]. Falco, L., Pogliani, C., Curutchet, G., Donati, E., 2003. A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 71, 31–36.

[8]. Diao, M., Nguyen, T.A.H., Taran, E., Mahler, S., Nguyen, A.V., 2014. Differences in adhesion of A. thiooxidans and A. ferrooxidans on chalcopyrite as revealed by atomic force microscopy with bacterial probes. Miner. Eng. 61, 9–15.

[9]. Zhang, R., Hedrich, S., Römer, F., Goldmann, D., Schippers, A., 2020. Bioleaching of cobalt from Cu/Co-rich sulfidic mine tailings from the polymetallic Rammelsberg mine, Germany. Hydrometallurgy 197, 105443.

[10]. Bryan, C.G., Hallberg, K.B., Johnson, D.B., 2006. Mobilisation of metals in mineral tailings at the abandoned São Domingos copper mine (Portugal) by indigenous acidophilic bacteria. Hydrometallurgy 83, 184–194.

[11]. Tagg, J. R., Dajani, A. S., Wannamaker, L.W., 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40, 722-756.

[12]. Kekessy, D.A., Piguet, J.D., 1970. New method for detecting bacteriocin production. Appl. Microbiol. 20, 282-283.

[13]. Joerger, M.C., Klaenhammer, T.R., 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 167, 439–446.

[14]. Roberto, F.F., Bruhn, D.F., Wilhite, A.M., Ward, T.E., 1993. Phylogenetic and biochemical characterization of acidophilic bacteria. FEMS Microbiology Reviews 11, 31-36.

[15]. Estepar, J., Sánchez, M.D.M., Alonso, L., Mayo, B. 1999. Biochemical and microbiological characterization of artisanal ‘Peñamellera’ cheese: analysis of its indigenous lactic acid bacteria. International Dairy Journal 9, 737-746.

[16]. Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., Gobbetti, M., 2000. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 66, 4084–4090.

[17]. Sánchez, I., Palop, L., Ballesteros, C., 2000. Biochemical characterization of lactic acid bacteria isolated from spontaneous fermentation of ‘Almagro’ eggplants. International Journal of Food Microbiology 59, 9–17.

[18]. Raval, V.H., Pillai, S., Rawal, C.M., Singh, S.P., 2014. Biochemical and structural characterization of a detergent-stableserine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochemistry 49, 955–962.

[19]. Yu, P., Sun, Y., Huang, Z., Zhu, F., Sun, Y., Jiang, L., 2020. The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. Journal of Hazardous Materials 381, 121203.

[20]. Sahoo, H., Senapati, D., Thakur, I.S., Naik, U.C., 2020. Integrated bacteria-algal bioreactor for removal of toxic metals in acid mine drainage from iron ore mines. Bioresource Technology Reports 11, 100422.

[21]. Tan, G.L., Shu, W.S., Hallberg, K.B., Li, F., Lan, C.Y., Huang, L.N. 2007. Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. FEMS Microbiol Ecol 59, 118–126.

[22]. Atapour, H., Aftabi, A., 2007. The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: Implications for exploration and the environment. J. Geochem. Explor. 93, 47–65.

[23]. Khorasanipour, M., Esmaeilzadeh, E. 2016. Environmental characterization of Sarcheshmeh Cu-smelting slag, Kerman, Iran: Application of geochemistry, mineralogy and single extraction methods. Journal of Geochemical Exploration 166, 1–17.

[24]. Jannesar Malakooti, S., Shafaei Tonkaboni, S.Z., Noaparast, M., Doulati Ardejani, F., Naseh. R., 2014. Characterisation of the Sarcheshmeh copper mine tailings, Kerman province, Southeast of Iran. Environ. Earth. Sci. 71, 2267–2291.

[25]. Khorasanipour, M., 2015. Environmental mineralogy of Cu-porphyry mine tailings, a case study of semi-arid climate conditions, Sarcheshmeh mine, SE Iran. Journal of Geochemical Exploration 153, 40–52.

[26]. Lusa, M., Knuutinen, J., Lindgren, M., Virkanen, J., Bomberg, M., 2019. Microbial communities in a former pilot-scale uranium mine in Eastern Finland – Association with radium immobilization. Sci. Total Environ. 686, 619-640.

[27]. Pourhossein, F., Mousavi, S.M., 2018. Enhancement of copper, nickel, and gallium recovery from LED waste by adaptation of Acidithiobacillus ferrooxidans. Waste Manag. 79, 98–108.

[28]. Mafi Gholami, R., Borghei, S. M., Mousavi, S. M., 2011. Bacterial leaching of a spent Mo–Co–Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 106, 26–31.

[29]. Obase, K., 2019. Extending the hyphal area of the ectomycorrhizal fungus Laccaria parva co-cultured with ectomycorrhizosphere bacteria on nutrient agar plate. Mycoscience 60, 95-101.

[30]. Burkin, A. R. 2001. Chemical Hydrometallurgy: Theory and Principles. ISBN: 978-1-86094-184-9.

[31]. Sheik, G.B., Abd Al Rheam, A.I.A., Al Shehri, Z.S., Al Otaibi, O.B.M., 2015. Assessment of Bacteria and Fungi in air from College of Applied Medical Sciences (Male) at AD-Dawadmi, Saudi Arabia. Int. Res. J. Biol. Sci. 4, 48-53.

[32]. Tao, H., Dongwei, L., 2014. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy–a presentation. Biotechnology Reports 4, 107–119.

[33]. Pattanaik, A., Sukla, L.B., Pradhan, D., Samal, D.P.K., 2020. Microbial mechanism of metal sulfide dissolution. Materials Today: Proceedings 30, 326-331.

[34]. Quatrini, R., Johnson D.B., 2019. Acidithiobacillus ferrooxidans. Trends in Microbiology 27, 282-283.

[35]. Yang, L., Zhao, D., Yang, J., Wang, W., Chen, P., Zhang, S., Yan, L., 2019. Acidithiobacillus thiooxidans and its potential application. Applied Microbiology and Biotechnology 103 (3).