Rock Mechanics
Aref Jaberi; Shokroallah Zare
Abstract
Unlike the mechanical properties of intact rock, which can be obtained on a laboratory scale, estimating the mechanical properties of the jointed rock mass is very difficult due to the presence of different joints and the complexity of the joints. Therefore, to calculate the mechanical parameters of ...
Read More
Unlike the mechanical properties of intact rock, which can be obtained on a laboratory scale, estimating the mechanical properties of the jointed rock mass is very difficult due to the presence of different joints and the complexity of the joints. Therefore, to calculate the mechanical parameters of the jointed rock mass and use the continuous media theory of the jointed rock mass, it is necessary to calculate the Representative Element Volume (REV) of the rock mass. In this study, the Discrete Element Method (DEM) and the mechanical index of strength were used to investigate the effect of persistent and non-persistent joint angles, as well as model size on the REV in x, y, and z directions. The numerical results showed that by changing the joint angles and side length, both the strength and the REV of the rock mass were affected. The maximum representative side length for the persistent joint in the x and z directions occurred at angles of 60° and 75°, respectively. The minimum strength was obtained for joints in the x and z directions at a 45° angle. Finally, the REV for persistent and non-persistent joints is calculated as 10*0.5*8m and 4*0.5*4m, respectively.
Rock Mechanics
Mohammad Reza Shahverdiloo; Shokroallah Zare
Abstract
The deformation modulus of rock mass is necessary for stability analysis of rock structures, which is generally estimated by empirical models with one to five input parameters/indexes. However, appropriate input parameter participation to establish a sound basis for a reliable prediction has been a challenging ...
Read More
The deformation modulus of rock mass is necessary for stability analysis of rock structures, which is generally estimated by empirical models with one to five input parameters/indexes. However, appropriate input parameter participation to establish a sound basis for a reliable prediction has been a challenging task. In this study, the concept of the principal input parameters was developed based on an analytical method with an emphasis on in situ stress. Based on analytical methods, Young’s modulus of intact rock, the joint’s shear and normal stiffness, joint set spacing, and in situ stress are introduced as the main principal input parameters. A review of seventy empirical models revealed that most of them suffered from a lack of analytical parameters. Due to considering practical issues, the geological strength index (GSI) is replaced with joint set spacing; moreover, the in situ stress effect is perceived by combining Young’s modulus and joint stiffness with specific confining pressure and normal stress, respectively. The integration of the analytical base input parameters and practical issues enhanced the reliability of empirical models due to the reasonable prediction of the deformation modulus to numerical or analytical deformability analysis.
Leila Nikakhtar; Shokroallah Zare; Hossein Mirzaei
Abstract
Surface settlement induced by tunneling is one of the most crucial problems in urban environments. Hence, accurate prediction of soil geotechnical properties is an important prerequisite in the minimization of it. In this research work, the amount of surface settlement is predicted using three-dimensional ...
Read More
Surface settlement induced by tunneling is one of the most crucial problems in urban environments. Hence, accurate prediction of soil geotechnical properties is an important prerequisite in the minimization of it. In this research work, the amount of surface settlement is predicted using three-dimensional numerical simulation in the finite difference method and Artificial Neural Network (ANN). In order to determine the real geotechnical properties of soil layers around the tunnel; back-analysis is carried out using the optimization algorithm and monitoring data. Among the different optimization methods, genetic algorithm (GA) and particle swarm optimization (PSO) are selected, and their performance is compared. The results obtained show that the artificial neural network has a high ability with the amounts of R=0.99, RMSE=0.0117, and MSE= 0.000138 in predicting the surface settlement obtained from 150 simulations from randomly generated data. Comparing the results of back-analysis using the optimization algorithm, the genetic algorithm shows less error than the particle swarm algorithm in different initial populations. In all cases of analysis, the calculation time for both algorithms lasts about 5 minutes, which indicates the applicability of both algorithms in optimizing the parameters in mechanized tunneling in a short time.
M. Mazraehli; Sh. Zare; M. Adebayo Idris
Abstract
The purpose of this work is to present an approach for the probabilistic stability analysis of tunnels considering the heterogeneity of geo-mechanical properties. A stochastic procedure is followed to account for the variability in the rock mass property characterization. The finite difference method ...
Read More
The purpose of this work is to present an approach for the probabilistic stability analysis of tunnels considering the heterogeneity of geo-mechanical properties. A stochastic procedure is followed to account for the variability in the rock mass property characterization. The finite difference method is coupled with the Monte Carlo simulation technique to incorporate the randomness of rock mass properties. Moreover, a particular performance function is defined to investigate the excavation serviceability based on the permissible deformations. In order to validate the analysis, the probabilistic and the deterministic results are compared with the in-situ measurements. It can be observed that in both the probabilistic and deterministic analyses the largest displacements occur in the invert. In contrast, the smallest displacements are recorded in the sidewalls. Utilizing the performance function, the probability of failure for the invert, crown, left, and right wall is estimated as 100%, 68.8%, 16.2%, and 20.9%, respectively. Comparing the measured and calculated convergences, it is conjectured that the deterministic analysis underestimates the displacements, while the measured values are very close to the mean values predicted by the probabilistic analysis. The results obtained indicate that the presented approach could be a reliable technique compared to the conventional deterministic method.
M. R. Shahverdiloo; Sh. Zare
Abstract
Hydraulic fracturing (HF) and hydraulic testing of pre-existing fractures (HTPF) are efficient hydraulic methods in order to determine the in-situ stress of rock mass. Generally, the minimum (Sh) and maximum (SH) horizontal principal stresses are measured by hydraulic methods; ...
Read More
Hydraulic fracturing (HF) and hydraulic testing of pre-existing fractures (HTPF) are efficient hydraulic methods in order to determine the in-situ stress of rock mass. Generally, the minimum (Sh) and maximum (SH) horizontal principal stresses are measured by hydraulic methods; the vertical stress (SV) is calculated by the weight of the overburden layers. In this work, 37 HF and HTPF tests are conducted in a meta-sandstone, which has about 10% inter-layer phyllite. The artesian circumstance, considerable gap between the drilling and hydraulic tests in the long borehole, no underground access tunnel to rock cavern at the early stages of projects, and a simplified hypothesis theory of HF are the main challenges and limitations of the HF/HTPF measurements. Due to the instability in the long borehole, the drill rig type and borehole length are revised; also TV logger is added to the process of selection of the test’s deep. The HF/HTPF data is sequentially analyzed by the classic and inversion methods in order to achieve an optimum number of hydraulic tests. Besides, The SH magnitude in the inversion method is lower than the classic method; the relevant geological data and the faulting plan analysis lead to validate the SH and Sh magnitudes and the azimuths obtained by the classic method. The measured SH and Sh magnitudes are 7-17 MPa and 4-11 MPa, respectively; the calculated vertical stress magnitude is 6-14 MPa at the test locations. Indeed, the stress state is (SH > SV > Sh), and SH azimuth range is 56-93 degrees.
S. Akbari; Sh. Zare; H. Chakeri; H. Mirzaei Nasir Abad
Abstract
Evaluation of the interaction between a new and the existing underground structures is one of the important problems in urban tunneling. In this work, using FLAC3D, four numerical models of single- and twin-tube tunnels in urban areas are developed, where the horizontal distance between the single- and ...
Read More
Evaluation of the interaction between a new and the existing underground structures is one of the important problems in urban tunneling. In this work, using FLAC3D, four numerical models of single- and twin-tube tunnels in urban areas are developed, where the horizontal distance between the single- and twin-tube tunnels are varied. The aim is to analyze the effects of the horizontal distances, considering various criteria such as the deformation of linings, the forces and moments exerted on the twin-tube tunnels and their safety factors, the subsidence that occur on the surface and the nearby buildings, the stability of the single-tube tunnel, and the stability of the pillar lying between the single- and twin-tube tunnels. Considering the above-mentioned criteria, the results obtained indicate that the interaction between the single- and twin-tube tunnels is virtually negligible in the distance more than three times the single-tube tunnel diameter. Also the stability of the pillar lying between the tunnels makes the distance to be chosen at least 1.5 times the single-tube tunnel diameter.
Rock Mechanics
L. Nikakhtar; Sh. Zare; H. Mirzaei Nasir Abad
Abstract
One of the main issues involved during tunnel construction with tunnel boring machines is the tail gap grouting. This gap is between the external diameter of tunnel lining and the excavation boundary that is filled with high-pressure grouting materials. In this work, three different approaches of gap ...
Read More
One of the main issues involved during tunnel construction with tunnel boring machines is the tail gap grouting. This gap is between the external diameter of tunnel lining and the excavation boundary that is filled with high-pressure grouting materials. In this work, three different approaches of gap grouting modeling in the FLAC3D software are investigated with a special attention to the influence of the grout material hardening process. In the first approach, the grout is modeled as a liquid during injection, and considering the TBM advancement and its hardening time, the grout characteristics are changed to the properties of the solid grouting. In the second approach, the grouting material from the beginning of injection is considered with the properties of solid grouting in the model, and the liquid phase is ignored. In the third approach, without considering the back-filled grouting area in the model geometry, only the injection pressure is applied to the end of the shield and behind the installed segments. The validity of the approaches is evaluated with respect to the maximum ground surface settlement. All the three approaches estimate different surface settlement but the result of the first approach is closer to the monitoring data. Also as a sensitivity analysis, in this work, we investigate the effect of the elastic modulus of liquid and solid grouting materials on the amount of surface settlement that can help to gain a more accurate insight into the effect of grout mixture.
Rock Mechanics
Seyed S. Mousavi; M. Nikkhah; Sh. Zare
Abstract
In this work, we tried to automatically optimize the cost of the concrete segmental lining used as a support system in the case study of Mashhad Urban Railway Line 2 located in NE Iran. Two meta-heuristic optimization methods including particle swarm optimization (PSO) and imperialist competitive algorithm ...
Read More
In this work, we tried to automatically optimize the cost of the concrete segmental lining used as a support system in the case study of Mashhad Urban Railway Line 2 located in NE Iran. Two meta-heuristic optimization methods including particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) were presented. The penalty function was used for unfeasible solutions, and the segmental lining structure was defined by nine design variables: the geometrical parameters of the lining cross-section, the reinforced feature parameters, and the dowel feature parameters used among the joints to connect the segment pieces. Furthermore, the design constrains were implemented in accordance with the American Concrete Institute code (ACI318M-08) and guidelines of lining design proposed by the International Tunnel Association (ITA). The objective function consisted of the total cost of structure preparation and implementation. Consequently, the optimum design of the system was analyzed using the PSO and ICA algorithms. The results obtained showed that the objective function of the support system by the PSO and ICA algorithms reduced 12.6% and 14% per meter, respectively.
M. Nikkhah; Seyed S. Mousavi; Sh. Zare; O. Khademhosseini
Abstract
The joints between segmental rings can withstand a certain amount of bending moment as well as axial and shear forces. Generally, in the structural analysis of tunnel segmental lining, the joints can be modeled as elastic hinges or rotational springs, and their rigidity should be demonstrated in terms ...
Read More
The joints between segmental rings can withstand a certain amount of bending moment as well as axial and shear forces. Generally, in the structural analysis of tunnel segmental lining, the joints can be modeled as elastic hinges or rotational springs, and their rigidity should be demonstrated in terms of the rigidity of the joints or their rotational stiffness. Therefore, the bending moment acting on the tunnel lining is reduced. Hence, the tunnel designers are free to choose a lining with a lower cost. In this research work, especially considering the joints, the structural analysis of the segmental lining with variation in the flexural stiffness of the joints ( ), soil resistance coefficient ( ), number of segmental lining joints, and joint arrangement of segmental lining were carried out by the Force-Method equations. The imposed bending moment and axial forces were computed based on the Beam-Spring method, which is widely used to analyze the internal forces of segmental lining, and compared them with the results of the Force-Method equations. Then the effects of joint arrangement patterns and joint rotational spring stiffness on the results of the Beam-Spring analysis were evaluated. Finally, the optimum characteristics of the reinforced concrete segmental lining design were evaluated using the interaction diagram of bending moments and axial forces. The results obtained showed that the presented pattern for the segmental lining at the Chamshir tunnel was imposed against the external pressures on the segmental lining with an acceptable safety factor.