Exploitation
Fatemeh Asadi Ooriad; Javad Gholamnejad; Ali Dabagh
Abstract
Designing and planning in open-pit mining encompass a series of processes that commence with the preparation of a block model. Subsequently, upon designing the final scope, it culminates with the timing and sequencing of mining blocks, with the aim to maximize the pit's value within specific technical ...
Read More
Designing and planning in open-pit mining encompass a series of processes that commence with the preparation of a block model. Subsequently, upon designing the final scope, it culminates with the timing and sequencing of mining blocks, with the aim to maximize the pit's value within specific technical and operational constraints. Mathematical programming methods have proven suitable for optimizing mine production scheduling. Previous studies have addressed various aspects, including the timing of deployment and periodic relocation of in-pit crushers. Nevertheless, significant challenges remain in integrating the in-pit crusher problem with production planning. This paper introduces a new mixed-integer linear programming model for long-term open-pit mine production planning, incorporating constrained pit deepening to enforce predominantly lateral progression throughout the planning horizon. To achieve this, the number of active benches in each time period was reduced, thereby decreasing the need for equipment movement between working benches. Furthermore, with the horizontal progression of the pit, more workspace became available for deploying in-pit crushers, reducing equipment movement costs between benches and overall transportation costs, ultimately lowering the mine's operational expenses. Finally, the proposed model was implemented at the Miduk copper mine. The results demonstrated that the proposed model successfully achieved the expected objectives, resulting in a 52.45% improvement in reducing the number of active benches and regarding execution time reduction, the model showed a 53.32% improvement.
Exploitation
saeideh Qaedrahmat; Javad Gholamnejad; Ali dabagh
Abstract
The scheduling of short-term production in open-pit mining requires determining an optimal extraction sequence for blocks to fulfill multiple goals over a short-term monthly, weekly and daily planning horizon. These goals include meeting required limits on ore grade, production tonnage, waste removal, ...
Read More
The scheduling of short-term production in open-pit mining requires determining an optimal extraction sequence for blocks to fulfill multiple goals over a short-term monthly, weekly and daily planning horizon. These goals include meeting required limits on ore grade, production tonnage, waste removal, and slope constraints. One of the key objectives of Short-Term Production Scheduling (STPS) is to ensure a stable and continuous supply of ore to the processing plant, while minimizing operating costs through measures such as reducing unnecessary equipment movements and variation in feed quality. However, one of the major obstacles to the operational feasibility of STPS is the limited working space available for equipment, as well as the excessive equipment movement between benches within each scheduling period. To tackle these challenges, this paper employs an Integer Goal Programming (IGP) with a new constraint that limits active benches per period, enhancing the practicality of production schedules. Unlike previous GP-based STPS models, it improves operational feasibility by ensuring extraction continuity and minimizing equipment movement. The model was tested on a copper deposit using GAMS software. The results show that by applying this new constraint, the average number of active benches per month was reduced from 14 to 10 )36% reduction) and the number of extraction periods per bench from 6 to 4 (33% reduction) without violating the existing constraints such as ore grade, tonnage, or slope. This approach improves equipment efficiency, reduces fuel consumption, reducing equipment relocation costs, promoting operational continuity of extraction and enhances operational feasibility in real conditions.
Exploitation
Elham Lotfi; Javad Gholamnejad; Mehdi Najafi; Mohammad Sadegh Zamani
Abstract
In the context of open pit mining operations, long-term production scheduling faces significant challenges due to inherent uncertainties, particularly in commodity prices. Traditional mathematical models often adopt a single-point estimation strategy for commodity price, leading to suboptimal mine plans ...
Read More
In the context of open pit mining operations, long-term production scheduling faces significant challenges due to inherent uncertainties, particularly in commodity prices. Traditional mathematical models often adopt a single-point estimation strategy for commodity price, leading to suboptimal mine plans and missed production targets. The simultaneous effect of commodity price uncertainty on the cut-off grade and long-term production scheduling is less considered. This paper introduces a novel model for optimizing open pit mine long-term production scheduling under commodity price uncertainty considering a dynamic cut-off grade strategy, based on a two-stage Stochastic Production Programming (SPP) framework. The presented model seeks to identify optimal mining block sequences, maximizing total discounted cash flow while penalizing deviations from production targets. To illustrate the model's efficiency, it was implemented in a copper mine. First, the Geometric Brownian Motion (GBM) model is used to quantify the future commodity price. Then, both deterministic and SPP models were solved using GAMS software. The results showed that the practical NPV obtained from the SPP model is approximately 3% higher than the DPP model, while all constraints are satisfied.
Exploitation
J. Gholamnejad; A. Azimi; M.R. Teymouri
Abstract
Stockpiling and blending play a major role in maintaining the quantity and quality of the raw materials fed into processing plants, especially the cement, iron ore and steel making, and coal-fired power generation industries that usually require a much uniformed feed. Due to the variable nature of such ...
Read More
Stockpiling and blending play a major role in maintaining the quantity and quality of the raw materials fed into processing plants, especially the cement, iron ore and steel making, and coal-fired power generation industries that usually require a much uniformed feed. Due to the variable nature of such materials, they even come from the same source and the produced ores or concentrates are seldom homogeneous enough to be directly fed to the processing plant ore furnaces. Processing plants in iron ore mines need uniform feed properties in terms of each variable (in this work, iron phosphorous ratio and Fe content in magnetite phase) grade of ore, and therefore, homogenization of iron ore from different benches of an open pit or ore dumps has become an essential part of modern mine scheduling. When ore dumps are considered as an ore source, the final grade of the material leaving the dump to the blending bed cannot be easily determined. This difficulty contributes to mixing the materials of different grades in a dump. In this work, the ore dump elements were treated as normally distributed random variables. Then a stochastic programming model was formulated in an iron ore mine in order to determine the optimum amount of ore dispatched from different bench levels in open pit and also four ore dumps to a windrow-type blending bed in order to provide a mixed material of homogenous composition. The chance-constrained programming technique was used to obtain the equivalent deterministic non-linear programming problem of the primary model. The resulting non-linear model was then solved using LINGO. The results obtained showed a better feed grade for the processing plant with a higher probability of grade blending constraint satisfaction.