Environment
Mehdi Soleymani Gharegol; Kazem Badv; Behzad Nemati akhgar
Abstract
This paper carried out the study on removing cyanide from aqueous solutions by modified zeolite with hexadecyltrimethylammonium bromide. After determining the properties of the prepared adsorbent by the XRD, SEM, FTIR, and BET techniques, the effect of parameters such as the initial concentration of ...
Read More
This paper carried out the study on removing cyanide from aqueous solutions by modified zeolite with hexadecyltrimethylammonium bromide. After determining the properties of the prepared adsorbent by the XRD, SEM, FTIR, and BET techniques, the effect of parameters such as the initial concentration of cyanide, pH, contact time, temperature, and the ionic strength of cyanide was examined by batch tests, and the effects of bed depth and flow rate on the performance of cyanide adsorption was investigated by column process. The XRD analysis showed the presence of clinoptilolite mineral in the structure of the raw zeolite, and the surface coating of raw zeolite by surfactant was detected by the SEM method. The FT-IR results confirmed the adsorption of cationic surfactant on the surface of the modified zeolite. The Langmuir, Freundlich and Tamkin adsorption models showed an excellent ability to describe the cyanide adsorption isotherm using the studied adsorbent. The adsorption capacity of cyanide by modified zeolite was 3.97 mg/g, significantly increased compared to the maximum adsorption capacity of raw zeolite cyanide (0.54 mg/g). The pseudo-second-order model has an excellent ability to describe the adsorption kinetics of cyanide contaminants using natural and modified zeolites. Maximum cyanide uptake capacity was achieved at pH value 8. Cyanide removal decreased with increasing pH and ionic strength of the stock solution and increased with an increase in solution temperature. Column study results confirmed that the adsorption capacity increased with the increasing bed depth, and decreased with increasing flow rate. Yoon-Nelson curves are closer to the experimental curves with high R2 values.
H. Ebadi; P. Pourghahramani; B. Nemati akhgar
Abstract
Structural changes of mechanically-activated ilmenite during milling by a planetary mill are monitored and determined as a function of the milling time. The maximum specific BET surface area of 10.76 m2/g is obtained after 150 min of milling. The results obtained indicate that agglomeration of the particles ...
Read More
Structural changes of mechanically-activated ilmenite during milling by a planetary mill are monitored and determined as a function of the milling time. The maximum specific BET surface area of 10.76 m2/g is obtained after 150 min of milling. The results obtained indicate that agglomeration of the particles occurs after 45 min of milling. The maximum X-ray amorphization degree of ca. 95% has been calculated after 150 min of milling. Estimation of the stored energy reveals that the X-ray amorphization degree has a dominant contribution to the excess enthalpy of the activated materials. The surface-weighted crystallite size in the ground ilmenite reaches 4.45 nm, which corresponds to the volume-weighted crystallite size of 8 nm and 11.18 nm obtained by the Williamson-Hall and Rietveld methods, respectively. After 150 min of mechanical activation, the root mean square strain, , increases to 0.78%, which corresponds to the strains of 1.43% and 1.04% obtained from the Williamson-Hall and Rietveld methods, respectively. Reduction in the crystallite size leads to the contraction of the ilmenite unit cell after 150 min. The reaction rate constant of the ilmenite dissolution increases by over 58 times after 150 min of milling. Activation energy of the dissolution reaction decreases from 57.45 kJ/mol to 41.09 kJ/mol after 150 min of milling.
Mineral Processing
B. Nemati Akhgar; A. Fathzade; B. Golizadeh; S. Hajilou
Abstract
The flotation circuit in Sungun copper plant consists of two column flotation cells as cleaner, having fixed-spargers system. To achieve the expected aims in flotation step, there are serious operational challenges such as: fast choking of the static mixers, boiling problem, burping phenomena and pulp ...
Read More
The flotation circuit in Sungun copper plant consists of two column flotation cells as cleaner, having fixed-spargers system. To achieve the expected aims in flotation step, there are serious operational challenges such as: fast choking of the static mixers, boiling problem, burping phenomena and pulp overflow to concentrate lander, maintenance and control problems. An attempt was exerted by implementing new helical static mixer in one of cleaner cells instead of old elliptical type to overcome the challenges. The changes resulted in proper performance of the column whereas burping phenomena due to choking was eliminated, finer bubbles were produced, and the boiling and overflow problems were solved. Also, the static mixers life time increased to 7 months in helical column cells from one month in elliptical column cells. In addition to 40% air consumption reduction and 20% solid percent increase in final product, the grade of Cu and Mo increased by helical static mixer replacement up to about 18.7% from 16.8% (11%) and to 511.1 ppm from 263 ppm (94%) in the cleaner step, respectively. Recovery of Cu and Mo were increased about 1.5% and 0.2%, respectively. Finally, the results proved the effectiveness of finer bubble generation on grade improvement is depend on minerals hydrophobicity as Mo grade increased more than Cu.