Rock Mechanics
Kapoor Chand; Ved Kumar; Priyanshu Raj; Nikita Sharma; Amit Kumar Mankar; Radhakanta Koner
Abstract
Failure of tailings dams is a major issue in the mining industry as it critically impacts the environment and life. A major cause of the failure of tailings dams is the unplanned depositing of tailings and the increase in saturation due to rainfall events. This study using numerical modelling and artificial ...
Read More
Failure of tailings dams is a major issue in the mining industry as it critically impacts the environment and life. A major cause of the failure of tailings dams is the unplanned depositing of tailings and the increase in saturation due to rainfall events. This study using numerical modelling and artificial intelligence techniques (like MLR, SVR, DT, RF, and XGB) aims to predict the slope stability of tailings dams to avoid failure. The stability of tailings dams is analysed using the finite difference method (FDM), which computes the factor of safety (FoS) using the shear strength reduction (SSR) technique. This investigation mainly focuses on the geotechnical and geometric parameters of the tailings dam, such as density, cohesion, friction angle, saturation, embankment height, slope angle and haul road width. Results of numerical modelling have been used for developing ML models and predicting slope stability. The efficiency of ML models was analysed based on the R2 and root mean square error (RMSE), mean squared errors (MSE), and mean absolute error (MAE). The XGB algorithm proved to be the most effective as it gave the highest accuracy and lowest RMSE value compared to other ML models. AI tool was developed based on the ML model results for dam slope stability prediction. The developed AI tool will help understand the role of saturation and geometry parameters in embankment stability at the initial level of investigation.
Rock Mechanics
Kapoor Chand; Radhakanta Koner
Abstract
In open-pit mine, safety of internal dumps is a significant pointer on the economic perspective of the overall project. It has been found in several studies that unplanned and random deposition of the overburdened material is the main reason for mishaps and failure. The study utilized unmanned aerial ...
Read More
In open-pit mine, safety of internal dumps is a significant pointer on the economic perspective of the overall project. It has been found in several studies that unplanned and random deposition of the overburdened material is the main reason for mishaps and failure. The study utilized unmanned aerial vehicles (UAVs) to map the mine dumps, and the precise 3D geometry of the same was reconstructed to evaluate the safety using numerical methods. A framework is proposed to assess and identify the potential zone of instability in the mine dumps. The study was conducted at the open-pit mine at the Raniganj coalfield of Paschim Bardhaman in West Bengal, India. The study assessed the internal dump safety using a 3D limit equilibrium method and numerical methods. Finally, optimum parameters are suggested for the mine dumps geometry under the prevailing geo-mining conditions of the mine site. The framework proposed here for assessing critical zones in mine dumps is cost-effective, easy to use, quick, and efficient.
R. Koner
Abstract
The Wardha valley coalfields, situated in the western part of India, contribute to more than 7% of the national coal production. The open-pit mining methods are the modes of exploitation of coal in the majority of the mines in the area. Due to the increased depth of working and higher stripping ...
Read More
The Wardha valley coalfields, situated in the western part of India, contribute to more than 7% of the national coal production. The open-pit mining methods are the modes of exploitation of coal in the majority of the mines in the area. Due to the increased depth of working and higher stripping ratio, the output of waste overburden is increased. The challenges are the scarcity of the available land for dumping waste overburden geo-material safely. Optimization of the mine dump slope geometry is the only available alternative in the hands of the management in order to increase the life of the projects and continue the production of coal. This investigation specifically addresses this issue, and proposes a combination of the optimum geometric configurations of the dump slope. This work utilizes the computational power of the numerical modeling technique in order to solve a large number of alternatives and zero them down to the optimum combination. The numerical modeling is considered as a major external factor that contributes to the mine dump's instability. This work shows an 18% increase in the dumping waste material volume in the present condition. This investigation also reveals that double stage dumping is comparably better in optimizing the dump slope configuration.