Hassan Sarfaraz; Mohadeseh Sarlak; Fatemeh Ashoor; Erfan Amini
Abstract
In rock slopes, block toppling failure is a prevalent instability. In this instability, rock mass consists of a series of dominant parallel discontinuities that are dipping steeply into the slope face, and a series of cross-joints are located normal to the dominant discontinuities. Blocks may slide or ...
Read More
In rock slopes, block toppling failure is a prevalent instability. In this instability, rock mass consists of a series of dominant parallel discontinuities that are dipping steeply into the slope face, and a series of cross-joints are located normal to the dominant discontinuities. Blocks may slide or rotate due to their weight along the natural cross-joints at their base, and the tensile strength does not significantly affect the stability of the rock slope. The rounding edge of rock columns is a special feature of spheroidal weathering. Firstly, a literature review of block toppling instability is presented. Next, applying the Sarma approach, a new theoretical analysis is proposed for the rock columns with rounded edges. One of the advantages of the proposed approach is that by determining the sign of a parameter called KC, the stability status can be specified. The suggested solution is compared with a pre-existing analytical method through examples and case study. Comparisons indicate that the proposed approach has a satisfactory agreement. It can be concluded that with weathering and rounding of the block edges, the safety factor decreases non-linearly. Therefore, this solution can be used to evaluate the blocky toppling failure regarding the erosion phenomenon.
H. Sarfaraz; A.R. Bahrami; R. Samani
Abstract
A common instability in the rock slopes is a toppling failure. If this type of slope failure occurs due to another kind of failure, it is considered as the secondary toppling failure. A type of secondary toppling failure is the slide-head-toppling failure. In this instability, the upper portion of the ...
Read More
A common instability in the rock slopes is a toppling failure. If this type of slope failure occurs due to another kind of failure, it is considered as the secondary toppling failure. A type of secondary toppling failure is the slide-head-toppling failure. In this instability, the upper portion of the slope is toppled, and the pressure caused by the overturning of rock blocks leads to a semi-circular sliding in the soil mass at the slope toe. This instability is examined through the theoretical analysis and physical modelling. Firstly, the failure mechanism mentioned above is described. Next, the slide-head-toppling failure is studied through seven numerical simulations. The Phase2 and UDEC softwares, as the finite element and distinct element methods, respectively, are used in this work. Different kinds of slide-head-toppling failure are modelled such as the blocky, block-flexural, and flexural toppling failures. The numerical modelling results are compared with the existing physical tests and theoretical approaches. This comparison illustrates that the safety factor is underestimated due to the plane strain supposition in numerical modelling. However, the side-friction in the physical models has violated this assumption. The results obtained demonstrate that the distinct element method has an acceptable accuracy compared to the finite element method. Thus this numerical code can be used in order to examine the mentioned failure.
H. Sarfaraz; M. H. Khosravi; T. Pipatpongsa
Abstract
One of the most important tasks in designing the undercut slopes is to determine the maximum stable undercut span to which various parameters such as the shear strength of the soil and the geometrical properties of the slope are related. Based on the arching phenomenon, by undercutting a slope, the weight ...
Read More
One of the most important tasks in designing the undercut slopes is to determine the maximum stable undercut span to which various parameters such as the shear strength of the soil and the geometrical properties of the slope are related. Based on the arching phenomenon, by undercutting a slope, the weight load of the slope is transferred to the adjacent parts, leading to an increase in the stability of the slope. However, it may also lead to a ploughing failure on the adjacent parts. The application of counterweight on the adjacent parts of an undercut slope is a useful technique to prevent the ploughing failure. In other words, the slopes become stronger as an additional weight is put to the legs; hence, the excavated area can be increased to a wider span before the failure of the slope. This technique could be applied in order to stabilize the temporary slopes. In this work, determination of the maximum width of an undercut span is evaluated under both the static and pseudo-static conditions using numerical analyses. A series of tests are conducted with 120 numerical models using various values for the slope angles, the pseudo-static seismic loads, and the counterweight widths. The numerical results obtained are examined with a statistical method using the response surface methodology. An analysis of variance is carried out in order to investigate the influence of each input variable on the response parameter, and a new equation is derived for computation of the maximum stable undercut span in terms of the input parameters.
H. Sarfaraz
Abstract
One of the most conventional toppling instabilities is the block-flexural toppling failure that occurs in civil and mining engineering projects. In this kind of failure, some rock columns are broken due to tensile bending stresses, and the others are overturned due to their weights, and finally, all ...
Read More
One of the most conventional toppling instabilities is the block-flexural toppling failure that occurs in civil and mining engineering projects. In this kind of failure, some rock columns are broken due to tensile bending stresses, and the others are overturned due to their weights, and finally, all of the blocks topple together. A specific feature of spheroidal weathering is the rounding of the rock column edges. In the mode of flexural toppling failure, rounding of edges happens only at the upper corners of the block but in the block toppling failure mode, due to the presence of cross-joints at the base of the block, rounding of edges also occurs at the base of the block. In this work, a theoretical model is offered to block-flexural toppling failure regarding the erosion phenomenon. The suggested methodology is evaluated through a typical example and a case study. The results of this research work illustrate that in the stable slopes with rectangular prismatic blocks, where the safety factor value is close to one, the slope is subjected to failure due to erosion. Also the results obtained show that the recommended approach is conservative in analyzing the block-flexural toppling failure, and this approach can be applied to evaluate this failure.
Rock Mechanics
H. Sarfaraz; M. Amini
Abstract
One of the most important instabilities of rock slopes is toppling failure. Among the types of toppling failure, block-flexural failures are more common instability which occurs in nature. In this failure, some rock blocks break because of tensile stresses, and some overturn under their weights, and ...
Read More
One of the most important instabilities of rock slopes is toppling failure. Among the types of toppling failure, block-flexural failures are more common instability which occurs in nature. In this failure, some rock blocks break because of tensile stresses, and some overturn under their weights, and next to all of them topple together. Physical and theoretical modeling of this failure is studied by Amini et al. in 2015. Due to the complexity of this failure mechanism, no appropriate numerical model has been proposed so far. In this research, first, a literature review of toppling failure is summarized. Then, using UDEC software as distinct element method (DEM), the experimental models were analyzed numerically, and Voronoi joint model was applied to simulate the failure. The results of numerical simulations are compared with the outcomes of physical models and analytical solution. The comparison illustrates that numerical modeling has good agreement with corresponding experimental tests and theoretical approach. Also, the results show that although the mechanism of block-flexural toppling failure is complicated, the numerical code is well capable to analyze of this failure.
Rock Mechanics
H. Sarfaraz; M. H. Khosravi; M. Amini
Abstract
In layered and blocky rock slopes, toppling failure is a common mode of instability that may occur in mining engineering. If this type of slope failure occurs as a consequence of another type of failure, it is referred to as the secondary toppling failure. “Slide-head-toppling” is a type ...
Read More
In layered and blocky rock slopes, toppling failure is a common mode of instability that may occur in mining engineering. If this type of slope failure occurs as a consequence of another type of failure, it is referred to as the secondary toppling failure. “Slide-head-toppling” is a type of secondary toppling failures, where the upper part of the slope is toppled as a consequence of a semi-circular sliding failure at the toe of the slope. In this research work, the slide-head-toppling failure is examined through a series of numerical modeling. Phase 2, as a software written based on the finite element method, is used in this work. Different types of slide-head-toppling failures including blocky, block-flexural, and flexural are simulated. A good agreement can be observed when the results of the numerical modeling are compared with those for the pre-existing physical modeling and analytical method.