Exploration
Ajay Kumar
Abstract
Land use (LU) classification based on remote sensing images is a challenging task that can be effectively addressed using a learning framework. However, accurately classifying pixels according to their land use poses a significant difficulty. Despite advancements in feature extraction techniques, the ...
Read More
Land use (LU) classification based on remote sensing images is a challenging task that can be effectively addressed using a learning framework. However, accurately classifying pixels according to their land use poses a significant difficulty. Despite advancements in feature extraction techniques, the effectiveness of learning algorithms can vary considerably. In this study conducted in Talcher, Odisha, India, the researchers proposed the use of Artificial Neural Networks (ANNs) to classify land use based on a dataset collected by the Sentinel-2 satellite. The study focused on the Talcher region, which was divided into five distinct land use classes: coal area, built-up area, barren area, vegetation area, and waterbody area. By applying ANNs to the mining region of Talcher, the researchers aimed to improve the accuracy of land use classification. The results obtained from the study demonstrated an overall accuracy of 79.4%. This research work highlights the importance of utilizing remote sensing images and a learning framework to address the challenges associated with pixel-based land use classification. By employing ANNs and leveraging the dataset from the Sentinel-2 satellite, the study offers valuable insights into effectively classifying different land use categories in the Talcher region of India. The findings contribute to the advancement of techniques for accurate land use analysis, with potential applications in various fields such as urban planning, environmental monitoring, and resource management.
Ajay Kumar; Aditya Gupta; Yadvendra Pratap Singh; Monu Bhagat
Abstract
Land use (LU) is one of the most imperative pieces of cartographic information used for monitoring the mining environment. The extraction of land use data sets from remotely sensed satellite images has garnered significant interest in the mining region community. However, classification of LUs from satellite ...
Read More
Land use (LU) is one of the most imperative pieces of cartographic information used for monitoring the mining environment. The extraction of land use data sets from remotely sensed satellite images has garnered significant interest in the mining region community. However, classification of LUs from satellite images remains a tedious task due to the lack of availability of efficient coal mining related datasets. Deep learning methods provide great leverage to extract meaningful information from high-resolution satellite images. Moreover, the performance of a deep learning classification approach significantly depends on the quality of the datasets. The present work attempts to demonstrate the generation of satellite-based datasets for the performance analysis of different deep neural network (DNN)-based learning algorithms in the LU classifications of mining regions. The mining regions are broadly classified into distinct regions based on visual inspection, namely barren land, built-up areas, waterbody, vegetation, and active coal mines. In our experimental work, a patch of 100 spatial samples for each of the five features is generated on three scales, as [1 × 1 × 3], [5 × 5 × 3], and [10 × 10 × 3]. Moreover, the effects of different scalabilities of the dataset on classification performances are also analyzed. Furthermore, this case study is implemented for the large-scale benchmark of satellite image datasets for mining regions. In the future, this work can be used to classify LU in the relevant study regions in real time.