Exploitation
Sahil Kumar; ABHISHEK SHARMA; Kanwarpreet Singh
Abstract
This study investigates the application of the Rapid Mass Movement Simulation (RAMMS) tool in assessing and mitigating various types of landslides. The research encompasses comprehensive field visits to diverse landslide-prone areas, capturing detailed photographic evidence to document pre- and post-landslide ...
Read More
This study investigates the application of the Rapid Mass Movement Simulation (RAMMS) tool in assessing and mitigating various types of landslides. The research encompasses comprehensive field visits to diverse landslide-prone areas, capturing detailed photographic evidence to document pre- and post-landslide conditions. Utilizing the field data, RAMMS simulations were conducted to model the dynamics of different landslide scenarios, including rockfalls, debris flows, and avalanches. The simulations provided insights into the potential impact zones, flow velocities, and deposition patterns of landslides under varying environmental conditions. The results highlight the efficacy of RAMMS in predicting landslide behavior and guiding mitigation strategies. By comparing the simulation outputs with field observations, we validated the accuracy of RAMMS models, demonstrating their utility in real-world applications. Furthermore, the study identifies key factors influencing landslide susceptibility and proposes targeted mitigation measures to enhance community flexibility. This research underscores the importance of integrating advanced simulation tools like RAMMS with empirical field data to develop strong landslide risk management frameworks.
Rock Mechanics
Tanya Thakur; Kanwarpreet Singh; Abhishek Sharma
Abstract
Landslides affecting life and property losses has become a serious threat in various countries worldwide which highlights the importance of slope stability and mitigation. The methods and tools employed for slope stability analysis, ranging from traditional limit equilibrium methods to worldly-wise numerical ...
Read More
Landslides affecting life and property losses has become a serious threat in various countries worldwide which highlights the importance of slope stability and mitigation. The methods and tools employed for slope stability analysis, ranging from traditional limit equilibrium methods to worldly-wise numerical modeling techniques. It focuses on the importance of accurate and reliable data collection, including geotechnical investigations, in developing precise slope stability assessments. Further, it also addresses challenges associated with predicting and mitigating slope failures, particularly in dynamic and complex environments. Mitigation strategies for unstable slopes were systematically reviewed of different researchers, encompassing both traditional and innovative measures. Traditional methods, such as retaining walls and drainage systems, the mitigation strategies were explored, emphasizing both preventive measures and remedial interventions. These include the implementation of engineering solutions such as slope structures, and Matrix Laboratory (MATLAB) techniques along with the comprehensive analysis of four prominent slope stability assessment tools: Rock Mass Rating (RMR), Slope Mass Rating (SMR), and the Limit Equilibrium Method (LEM). The comparative analysis of these tools highlights their respective strengths, limitations, and areas of application, providing researchers, authors, and practitioners with valuable insights to make informed choices based on project-specific requirements. To ensure the safety and sustainability of civil infrastructure, a thorough understanding of geological, geotechnical, and environmental factors in combination with cutting-edge technologies is required. Furthermore, it highlights the important role that slope stability assessment and mitigation play a major role in civil engineering for infrastructure development and mitigation strategies.
Mineral Processing
Zehra Khan; Abhishek Sharma
Abstract
Due to rapid growth in infrastructure sector, the construction of high-rise buildings is becoming very popular among all the countries. Engineers face significant issues with high rise buildings, particularly in terms of structural and foundation aspects. Many old design approaches can't be used with ...
Read More
Due to rapid growth in infrastructure sector, the construction of high-rise buildings is becoming very popular among all the countries. Engineers face significant issues with high rise buildings, particularly in terms of structural and foundation aspects. Many old design approaches can't be used with certainty since they involve extrapolation far beyond the domains of existing experience, hence structural and geotechnical engineers are being compelled to use more advanced analysis and design methodologies. The current study is an attempt to predict the bearing capacity and settlement behavior of piled-raft footing when embedded into cohesionless deposit. The numerical analysis has been carried out to examine the effect of numerous key parameters of pile and raft such as pile length (10, 15, 20 m), pile diameter (0.3, 0.4, 0.5 m), pile number (16, 20, 24), pile spacing (2D, 3D, 4D) (where “D” is diameter of the pile), raft thickness (0.4, 0.5, 0.6 m), and angle of internal friction of soil (25°, 30°, 35°) on load-settlement behavior of the piled- raft foundation using ABAQUS software. A constant spacing between the piles, i.e. 3D was used throughout the analysis. The results of numerical investigation revealed an improvement in bearing capacity and a reduction in settlement value on increasing length, diameter and number of piles and also with increasing angle of internal friction. The current study not only increases the bearing capacity of the foundation but provides a cost-effective foundation technique to engineers.
Avinash Chandan; Abhishek Sharma
Abstract
Due to disposal concerns, an enormous quantity of personal protective equipment (PPE) waste from the COVID-19 pandemic constituted a severe health and environmental risk. During the pandemic, the usage of protective suits increased dramatically raising concerns about how to dispose of them to safeguard ...
Read More
Due to disposal concerns, an enormous quantity of personal protective equipment (PPE) waste from the COVID-19 pandemic constituted a severe health and environmental risk. During the pandemic, the usage of protective suits increased dramatically raising concerns about how to dispose of them to safeguard the environment. This research work uses shredded face masks (SFM) to stabilise clayey soil for sub-grade usage. Shredded face masks are added to clayey soil to investigate consistency limits, compaction characteristics, unconfined compressive strength (UCS), and California bearing ratio (CBR). Laboratory experiments demonstrate that clayey soil geo-technical characteristics such differential free swell, consistency limits, UCS, and CBR values have improved. Based on the CBR results, the IITPAVE software is used to design flexible pavement thickness, which was reduced for various commercial vehicles per day for all combinations. Cost analysis is also done to determine the total cost for a 1000-meter stretch. The results show that addition of SFM to clayey soils strengthen the geo-technical properties of clayey soil as the UCS values increase for all curing periods of 3, 7, and 28 days with a maximum improvement of 64% for 28 days curing for 1% SFM content. Also, the CBR value is found to be increased from 1.96% to 6.72%.
Environment
Sehla Altaf; Kanwarpreet Singh; Abhishek Sharma
Abstract
The expansion and contraction properties of black cotton soil make it a challenging task to construct structures on it. Hence, modifying its expansion and contraction behavior is imperative to make black cotton soil appropriate for construction purposes. This study aims to assess the geo-technical properties ...
Read More
The expansion and contraction properties of black cotton soil make it a challenging task to construct structures on it. Hence, modifying its expansion and contraction behavior is imperative to make black cotton soil appropriate for construction purposes. This study aims to assess the geo-technical properties of black cotton soil through laboratory testing, incorporating waste foundry sand (WFS) and sodium chloride (NaCl) to utilize the combination as sub-grade material. Differential free swell, consistency limits, the standard Proctor test, and California bearing ratio (CBR) tests are conducted with varying amounts of both materials. The laboratory testing reveals that the addition of the appropriate amount of waste foundry sand, sodium chloride, or both, improve the geo-technical properties of black cotton soil (BCS). Furthermore, using the CBR values obtained, the thickness of flexible pavement is designed with the IITPAVE software and evaluated against the IRC: 37-2018 recommendations. The software analysis demonstrates a reduction in pavement thickness for varying levels of commercial vehicles per day such as 1000, 2000, and 5000 CVPD across all combinations. This mixture not only addresses the issues related to black cotton soil but also provides an economical solution for soil stabilization and proves to be sustainable as it involves the utilization of waste materials such as waste foundry sand.
Devraj Dhakal; Salad Omar Abdi; Kanwarpreet Singh; Abhishek Sharma
Abstract
The highway contributes significantly to human existence by providing safe, dependable, and cost-effective services that are environmentally friendly and promote economic progress. Highway projects need extensive planning to prevent work revisions, save time and cost, and increase job efficiency. Without ...
Read More
The highway contributes significantly to human existence by providing safe, dependable, and cost-effective services that are environmentally friendly and promote economic progress. Highway projects need extensive planning to prevent work revisions, save time and cost, and increase job efficiency. Without a doubt, Highway transportation system must be constantly updated to keep up with technology breakthroughs, environmental change, and rising client needs. Incorporating Remote Sensing (RS) and Geographic Information Systems (GISs) has the potential to go beyond the limitations of RS, which typically collects information about the earth and its peripheries from space, and does not alter, analyze, calculate, query or display geographic engineering maps. Over the last few decades, the fusion of RS and GIS has shown promise, and the researchers are employing it in different stages of the Highway Planning and Development Process (HPDP) such as optimal route analysis, geometric design, operation and management, traffic modeling, accident analysis, and environmental impact analysis (noise pollutions, air pollutions). This paper gives an overall review of the use of RS and GIS on HPDP at various stages of their lifecycles.
Kaustubh Sinha; Priyangi Sharma; Kanwarpreet Singh; Sushindra Kumar Gupta; Abhishek Sharma
Abstract
Land surface temperature (LST) is one of the most important geological features of any area in the present times. During the study, the information regarding the land surface temperature is calculated using the Arc-GIS software. The LANDSAT 8 (2022) and LANDSAT 4-5 (2001 and 2011) satellite images are ...
Read More
Land surface temperature (LST) is one of the most important geological features of any area in the present times. During the study, the information regarding the land surface temperature is calculated using the Arc-GIS software. The LANDSAT 8 (2022) and LANDSAT 4-5 (2001 and 2011) satellite images are used for the calculation of LST. From the LST maps of years 2001 and 2011, a significant rise is noticed; this is due to the rapid increment in the population of the said area. A gradual increment in the LST is present between the second period of 2011-2022. A connection between the LST and the specific humidity has also been drawn in this aspect. The specific humidity in the region has seen a significant increment in the concerned time period. Overall, it is observed that the LST of the area has increased rapidly from the -12 ˚C minimum temperature in 2001 to 27 ˚C in 2022; this is because of the human activity in the area, which has ultimately catered towards the degradation of the climatic condition and environment like LST.