Rock Mechanics
Pankaj Bhatt; Anil Kumar Sinha; Mariya Dayana P J; Parvathi Geetha Sreekantan; Murtaza Hasan
Abstract
The rapid development of road networks needs huge construction materials. Mining and industrial wastes can be used as sustainable road construction materials and will be alternatives to fulfill the huge demand in road construction. Zinc tailing is one such mining waste and has the potential for road ...
Read More
The rapid development of road networks needs huge construction materials. Mining and industrial wastes can be used as sustainable road construction materials and will be alternatives to fulfill the huge demand in road construction. Zinc tailing is one such mining waste and has the potential for road construction. This material was collected from Zawar mines (Rajasthan), and characterization was carried out for embankment/subgrade applications. A physical model test was conducted in the laboratory to examine the stress-settlement behaviour. To improve the modulus value of tailing, it was reinforced with geogrid in two different laying patterns, viz. layer/loop and stress-settlement behavior was studied. Different parameters were studied: reinforcement depth, layer of reinforcement, number of loops, and depth of loop of reinforcement. The experimental result was validated with the numerical finite element method (SoilWorks). Tailing comprises fine-grained silt-size particles (61%) with no swelling behavior and non-plastic nature. It has values of MDD and OMC as 1.86 g/cm3 and 11%, respectively. It has a higher value of CBR (12%) and internal friction angle (34.6o) with cohesionless nature. The variation of settlement with stress is linear for reinforced and unreinforced tailing fill. As the depth of reinforcement increases, settlement increases in both layer and loop reinforcement. The settlement trajectory obtained from a numerical method closely resembles that of a laboratory physical model, particularly when the applied stress is up to 600 kPa. The modulus of elasticity of tailing was significantly improved with the introduction of geogrid reinforcement either in layer or loop.
Exploration
Kaustubh Sinha; Priyangi Sharma; Anurag Sharma; Kanwarpreet Singh; Murtaza Hassan
Abstract
In this expansive study, a thorough analysis of land subsidence in the Joshimath area has been conducted, exercising remote sensing (RS) and Geographic Information System (Civilians) tools. The exploration encompasses colourful pivotal parameters, including Annual Rainfall, Geology, Geomorphology, and ...
Read More
In this expansive study, a thorough analysis of land subsidence in the Joshimath area has been conducted, exercising remote sensing (RS) and Geographic Information System (Civilians) tools. The exploration encompasses colourful pivotal parameters, including Annual Rainfall, Geology, Geomorphology, and Lithology, rounded by the integration of different indicators. Joshimath, a fascinating city nestled within the rugged geography of the Indian state of Uttarakhand, stands out for its unique geographical features and its vulnerability to environmental vulnerabilities. The disquisition is carried out with the backing of ArcMap software, a technical Civilians tool, while exercising data sourced from the recognized Indian Space Research Organisation (ISRO) and the National Remote seeing Centre (NRSC). This comprehensive approach aims to give inestimable perceptivity into the dynamic processes associated with land subsidence in the region, offering critical data for disaster mitigation strategies and sustainable land operation in the area. It's noteworthy that the region endured a significant case of land subsidence in late December 2022, emphasizing the punctuality and applicability of this study. This event not only emphasizes the urgency of comprehending land subsidence in Joshimath but also underscores the necessity for ongoing monitoring and mitigation sweats. The integration of these different data sources and logical ways promises to enhance the understanding of land subsidence dynamics and inform decision- makers in the pursuit of flexible and sustainable land use practices in Joshimath and other also vulnerable regions.