Rock Mechanics
Sadegh Amoun; Hamid Chakeri
Abstract
This study is an attempt to design and manufacture a tunnel boring machine (TBM) simulator to better understand the interaction between soil and cutting tools, due to the lack of an accepted method for this issue. In this paper, Sahand Soil Abrasion Test (SSAT) is introduced, which is built by the Sahand ...
Read More
This study is an attempt to design and manufacture a tunnel boring machine (TBM) simulator to better understand the interaction between soil and cutting tools, due to the lack of an accepted method for this issue. In this paper, Sahand Soil Abrasion Test (SSAT) is introduced, which is built by the Sahand University of Technology. The experimental and real results of tool wear are presented. The results firstly demonstrate that the cutting tools wear in the coarse-grained soils can be less than in the fine-grained ones in the real conditions. However, in the soils with fine grains higher than 10%, the wear of cuttings tools increase in the laboratory condition when grading parameters increase. In soils with fine grains less than 10%, the wear of tools decreases by increasing the grading parameters. Also the results reveal that the coefficient of gradation depend on the amount of silt and clay in the soil samples. The investigations show that sorting is another good criterion for investigating the power of soil abrasively. Furthermore, it indicates that the cutting tools wear increases when the moisture content of the soil structure in the dense condition approaches the optimal moisture content. Finally, the results indicate that the wear and torque of the cutterhead could be reduced by 58% and 34%, respectively, when the excavated materials have the appropriate conditioning.
Rock Mechanics
Taha Ansari; Hamid Chakeri; Mohammad Darbor; sadegh Amoun; Hadi Shakeri
Abstract
There is no acceptable method for investigating the tool wear phenomenon in soft grounds. In this article, first, a new equipment made at Sahand University of Technology is introduced, which is used for simulation of TBM tunneling mechanism. Next, the effect of various soil grading parameters such as ...
Read More
There is no acceptable method for investigating the tool wear phenomenon in soft grounds. In this article, first, a new equipment made at Sahand University of Technology is introduced, which is used for simulation of TBM tunneling mechanism. Next, the effect of various soil grading parameters such as D10, D30, and D60 (which indicate the corresponding diameters on the soil grading diagram where 10, 30, and 60% of the grains are smaller than these values, respectively), coefficient of gradation, uniformity coefficient, sorting coefficient and effective size on the cutting tools wear. The initial studies show that in soils with fine grains greater than 10%, by increase in the values of D10, D30, D60, and effective size, the tool wear increases. However, in soils with fine grains less than 10%, by increase in the above-mentioned parameters, the soil abrasiveness reduces. Also in soils with more than 10% fine grains, by increase in the coefficient of gradation value, the soil abrasiveness reduces. But in soils with fine grains less than 10%, by increase in the value of this parameter, the tool wear increases. The results of experiments show that sorting coefficient could be a good criterion for investigating the soil abrasiveness.