Exploration
Ashraf Ismael; Abdelrahem Khalefa Embaby; Faissal Ali; Hussin Farag; Sayed Gomaa; Mohamed Elwageeh; Bahaa Mousa
Abstract
The mineral resource estimation process necessitates a precise prediction of the grade based on limited drilling data. Grade is crucial factor in the selection of various mining projects for investment and development. When stationary requirements are not met, geo-statistical approaches for reserve estimation ...
Read More
The mineral resource estimation process necessitates a precise prediction of the grade based on limited drilling data. Grade is crucial factor in the selection of various mining projects for investment and development. When stationary requirements are not met, geo-statistical approaches for reserve estimation are challenging to apply. Artificial Neural Networks (ANNs) are a better alternative to geo-statistical techniques since they take less processing time to create and apply. For forecasting the iron ore grade at El-Gezera region in El- Baharya Oasis, Western Desert of Egypt, a novel Artificial Neural Network (ANN) model, geo-statistical methods (Variograms and Ordinary kriging), and Triangulation Irregular Network (TIN) were employed in this study. The geo-statistical models and TIN technique revealed a distinct distribution of iron ore elements in the studied area. Initially, the tan sigmoid and logistic sigmoid functions at various numbers of neurons were compared to choose the best ANN model of one and two hidden layers using the Levenberg-Marquardt pure-linear output function. The presented ANN model estimates the iron ore as a function of the grades of Cl%, SiO2%, and MnO% with a correlation factor of 0.94. The proposed ANN model can be applied to any other dataset within the range with acceptable accuracy.
Exploration
Abdelrahem Khalefa Embaby; Sayed Gomaa; Yehia Darwish; Samir Selim
Abstract
This study aims to develop an empirical correlation model for estimating the uranium content of the G-V in the Gabal Gattar area, northeastern desert of Egypt, as a function of the thorium content and the total gamma rays. Using the recent MATLAB software, the effect of selecting tan-sigmoid as a transfer ...
Read More
This study aims to develop an empirical correlation model for estimating the uranium content of the G-V in the Gabal Gattar area, northeastern desert of Egypt, as a function of the thorium content and the total gamma rays. Using the recent MATLAB software, the effect of selecting tan-sigmoid as a transfer function at various numbers of hidden neurons was investigated to arrive at the optimum Artificial Neural Network (ANN) model. The pure-linear function was investigated as the output function, and the Levenberg-Marquardt approach was chosen as the optimization technique. Based on 1221 datasets, a novel ANN-based empirical correlation was developed to calculate the amounts of uranium (U). The results show a wide range of uranium content, with a determination coefficient (R2) of about 0.999, a Root Mean Square Error (RMSE) equal to 0.115%, a Mean Relative Error (MRE) of -0.05%, and a Mean Absolute Relative Error (MARE) of 0.76%. Comparing the obtained results with the field investigation shows that the suggested ANN model performed well.