[1]. Dumakor-Dupey, N. K., & Arya, S. (2021). Machine learning—a review of applications in mineral resource estimation. Energies, 14(14), 4079.
[2]. Galetakis, M., Vasileiou, A., Rogdaki, A., Deligiorgis, V., & Raka, S. (2022). Estimation of mineral resources with machine learning techniques. Materials Proceedings, 5(1), 122.
[3]. Tariq, A., Yan, J., Ghaffar, B., Qin, S., Mousa, B. G., Sharifi, A., ... & Aslam, M. (2022). Flash flood susceptibility assessment and zonation by integrating analytic hierarchy process and frequency ratio model with diverse spatial data. Water, 14(19), 3069.
[4]. Jinchuan, Ke. (2002). Neural-network modelling of placer ore grade spatial variability. Dissertation, University of Alaska, Fairbanks.
[5]. Yasrebi, A. B., Hezarkhani, A., Afzal, P., Karami, R., Tehrani, M. E., & Borumandnia, A. (2020). Application of an ordinary kriging–artificial neural network for elemental distribution in Kahang porphyry deposit, Central Iran. Arabian Journal of Geosciences, 13(15).
[6]. Mahmoudabadi, H., Mohammad, I., & Mohammad, B.M. (2009) A hybrid method for grade estimation using genetic algorithm and neural networks. Comput Geosci, 13:91–101.
[7]. Chiroma, H., Noor, A. S. M., Abdulkareem, S., Abubakar, A. I., Hermawan, A., Qin, H., ... & Herawan, T. (2017). Neural networks optimization through genetic algorithm searches: a review. Appl. Math. Inf. Sci, 11(6), 1543-1564.
[8]. Tahmasebi, P., & Hezarkhani, A., (2010). Comparison of optimized neural network with fuzzy logic for ore grade estimation. Aust J Basic Appl Sci, 4(5):764–772.
[9]. Tahmasebi, P., & Hezarkhani, A. (2012). A hybrid neural networks-fuzzy logic- genetic algorithm for grade estimation. Comput Geosci, 42, 18–27.
[10]. Li, XL., Li, LH., Zhang, BL., & Guo, QJ. (2013). Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation. Neurocomputing 118. 179–190.
[11] Dutta, S., Bandopadhyay, S., Ganguli, R., & Misra, D. (2010). Machine learning algorithms and their application to ore reserve estimation of sparse and imprecise data. Journal of Intelligent Learning Systems and Applications, 2(02), 86-96.
[12]. Embaby, A., Ismael, A., Ali, F. A., Farag, H. A., Mousa, B. G., Gomaa, S., & Elwageeh, M. (2023). An approach based on Machine Learning Algorithms, Geostatistical Technique, and GIS analysis to estimate phosphate ore grade at the Abu Tartur Mine, Western Desert, Egypt. Min. Depos, 17(1).
[13]. Afzal, P., Farhadi, S., Konari, M. B., Meigoony, M. S., & Saein, L. D. (2022). Geochemical Anomaly Detection in the Irankuh District Using Hybrid Machine Learning Technique and Fractal Modeling. Geopersia, 12(1), 191–199.
[14]. Farhadi, S., Afzal, P., Konari, M. B., Saein, L. D., & Sadeghi, B. (2022). Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals 2022, Vol. 12, Page 689, 12(6), 689.
[15]. Mostafaei, Kamran., & Ramazi, H. (2019a). Investigating the applicability of induced polarization method in ore modelling and drilling optimization: a case study from Abassabad, Iran. Near Surface Geophysics, 17(6), 637–652.
[16]. Waqas, H., Shang, J., Munir, I., Ullah, S.; Khan, R., Tayyab, M., Mousa, B.G., Williams, S. (2022). Enhancement of the Energy Performance of an Existing Building Using a Parametric Approach. J. Energy Eng, 149, 04022057.
[17]. Park, Y. S., & Lek, S. (2016). Artificial neural networks: Multilayer perceptron for ecological modeling. In Developments in environmental modelling (Vol. 28, pp. 123-140). Elsevier.
[18]. Misra, D., Samanta, B., Dutta, S., & Bandopadhyay, S. (2007). Evaluation of artificial neural networks and kriging for the prediction of arsenic in Alaskan bedrock-derived stream sediments using gold concentration data. International Journal of Mining, Reclamation and Environment, 21(4), 282-294.
[19]. Mostafaei, K., & Ramazi, H. (2019). Mineral resource estimation using a combination of drilling and IP-Rs data using statistical and cokriging methods. Bulletin of the mineral research and exploration, 160(160), 177-195.
[20]. Nezamolhosseini, S. A., Mojtahedzadeh, S. H., & Gholamnejad, J. (2017). The application of artificial neural networks to ore reserve estimation at choghart iron ore deposit. روش های تحلیلی و عددی در مهندسی معدن, 6(ویژه نامه انگلیسی), 73-83..
[21]. Mostafaei, K., & Ramazi, H. R. (2018). 3D model construction of induced polarization and resistivity data with quantifying uncertainties using geostatistical methods and drilling (case study: Madan Bozorg, Iran. Journal of Mining and Environment, 9(4), 857–872.
[22]. Mostafaei, Kamran., & Ramazi, H. (2018). Compiling and verifying 3D models of 2D induced polarization and resistivity data by geostatistical methods. Acta Geophysica, 66(5), 959–971.
[23]. Dwarapudi, S., & Rao, S. M. (2007). Prediction of iron ore pellet strength using artificial neural network model. ISIJ international, 47(1), 67-72.
[24]. Abdelhamid, M. M. A., Mousa, B. G., Waqas, H., Elkotb, M. A., Eldin, S. M., Munir, I., ... & Galal, A. M. (2022). Artificial thermal quenching and salt crystallization weathering processes for the assessment of long-term degradation characteristics of some sedimentary rocks, Egypt. Minerals, 12(11), 1393.
[25]. Gouda, M.A. (1996). Trend Analysis and Simulation Modeling of El-Gidida Iron Ore Deposits. Unpublished Ph.D .Thesis, Mining and Petroleum Engineering Department, AL-Azhar University.
[26]. Badr Hussein, K., Ibrahim, M., & Mousa, B. G. (2023). Modeling and Analysis of Shoreline Change in the Sidi Abdel Rahman Coast Area, Egypt. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(1), 23-37.
[27]. Mousa, B.G., Embaby, A.K., & Osman, M.E. (2015). GIS Technology for El-Gedida Iron Ore to satisfy the Requirements of Egyptian Blast Furnace. International Journal of Scientific & Engineering Research, 6(9), 8–14.
[28]. El-Araf, M.M., & Lotfy, Z.H. (1989). Genetic Karst Significance of the Iron Ore Deposits of El Bahariya Oasis, Western Desert, Egypt . Reprint from the Annals of the Geological Survey of Egypt, 15:1-30.
[29]. Galal, El-Habaak., Mohamed, Askalany., Mohamed, Faraghaly., & Mahmoud, Abdel-Hakeem. (2016). Application of Microscopy Coupled With Image Analysis Technique In Ore Dressing: A Case Study from El-Gedida Iron Mine, El-Bahariya Oasis, Western Desert, Egypt. International Journal of Basic and Applied Science, Vol. 04, No. 03, pp. 33-41.
[30]. El Aref, M., Abd El-Rahman, Y., Zoheir, B., Surour, A., Helmy, H. M., Abdelnasser, A., & et al. (2020). Mineral Resources in Egypt (I). Metallic Ores, 521–587.
[31]. El Bassyony, A A. (2005). Bahariya teetotumensis n.gen.n.sp. from the Middle Eocene of Egypt. Rev. Paléobiol, 24, p.319-329.
[32]. Kennedy, K. H. 2009. Introduction to 3D Data. John Wiley & Sons, Inc., Hoboken, New Jersey.
[33]. Mousa, B.G., Embaby, A.E., & Osman, M.E.(2016). Applications of GIS in Operations of Open Cast Mining. LAP Lambert Academic Publishing, Germany, ISBN 3659882410.
[34]. Liu, H., & Wu, C. ) 2019). Developing a Scene-based Triangulated Irregular Network (TIN) Technique for Individual Tree Crown Reconstruction with LiDAR Data. Forests, 11, 28.
[35]. Mousa, B.G., Embaby, A. Kh., and Osman, M.E. (2014). Creating Data Base for Um Salamah-El Sibaiyyah- East Nile Valley Phosphate Ore by using Geographic Information System to Assist in Mining Process Management. Journal of Al-Azhar University Engineering Sector (JAUES), 9(1): 1548-1556.
[36]. Sadawy, M. M., & M, A. El ashkar, (2012).Prediction and modeling of corrosion in steel oil storage tank from non-destructive inspection. Journal of Al Azhar University Engineering Sector, 7(4), 42-53.
[37]. Sadawy, M. M., Ismael, A. F., & Goud, M. A. (2015).Geostatistical Analysis for Corrosion in Oil Steel Tank. American Journal of Science and Technology, Vol. 2, No. 2, pp. 38-42.
[38]. Taany, R.A., Tahboub, B., & G, A. (2009). Saffarini, Geostatistical analysis of spatiotemporal variability of groundwater level fluctuations in Amman-Zarqa basin, Jordan: A case study, Environ. Geo. l57, 525-535.
[39]. Mosaad, M. S., & Eltohamy, R. Elsharkawy.(2013). Prediction and Modelling of Corrosion in Steel Storage Tank using Non-destructive Inspection. Journal of Materials Science and Engineering, B 3 (12). pp.785-792
[40] Corte, A.F., Calaforra, J.M., Espinos, R. J., & Martos, F.S.(2006). Geostatistical spatiotemporal analysis of air temperature as an aid to delineating thermal stability zones in a potential show cave: Implications for environmental management. Jour. of Envir. Manag, 81, 371-383.
[41] Mousa, B.G., Shu, H., Freeshah, M., & Tariq, A. (2020). A Novel Scheme for Merging Active and Passive Satellite Soil Moisture Retrievals Based on Maximizing the Signal to Noise Ratio. remote sensing, 12, 3804.
[42]. Gomah, M.E., Li, G., Khan, N.M., Sun, C., Xu, J., Omar, A.A., Mousa, B.G., Abdelhamid, M.M.A., & Zaki, M.M.(2022). Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite using Multivariate Statistics and Machine Learning Techniques. Mathematics, Vol. 10, Page 4523 2022, 10, 4523.
[43]. Mousa, B.G., & Shu, H. (2020). Spatial Evaluation and Assimilation of SMAP, SMOS, and ASCAT Satellite Soil Moisture Products Over Africa Using Statistical Techniques. Earth Sp. Sci,7, 1–16.
[44.] Abdelhamid, M.M.A., & Mousa, B.G. (2023). prediction method for abrasion loss rate of some Egyptian carbonate rocks due to cyclic salt crystallization weathering using physico-mechanical deterioration: insights from laboratory investigations. Acta Geod. Geophys, 1–18.
[45]. Freeshah, M., Zhang, X., Şentürk, E., Adil, M. A., Mousa, B. G., Tariq, A., ... & Refaat, M. (2021). Analysis of atmospheric and ionospheric variations due to impacts of super typhoon Mangkhut (1822) in the Northwest Pacific Ocean. Remote Sensing, 13(4), 661.