Exploration
Ahmadreza Erfan; Saeed Soltani Mohammad; Maliheh Abbaszadeh
Abstract
Machine learning (ML) has significantly transformed multiple disciplines, including mineral resource evaluation in mining engineering, by facilitating more accurate and efficient estimation methods. Ensemble methods, as a fundamental component of modern machine learning, have emerged as powerful ...
Read More
Machine learning (ML) has significantly transformed multiple disciplines, including mineral resource evaluation in mining engineering, by facilitating more accurate and efficient estimation methods. Ensemble methods, as a fundamental component of modern machine learning, have emerged as powerful tools that robust techniques that integrate multiple predictive models to improve performance beyond that of any individual learner. This study proposes a novel ensemble method for estimating ore grades by localizing the base learner weights in ensemble method. Ordinary kriging, inverse distance weighting, k-nearest neighbors, support vector regression, and artificial neural networks have been used as the base learners of the algorithm. In ML base learners, coordinates (easting, northing and elevation) of samples have been defined as input nodes and grade has been defined as target. The proposed method has been validated for predicting the copper grade (Cu%) in Darehzar porphyry deposit. The performance of proposed method has been by individual base learners and famous ensemble methods. This comparison shows that performance of proposed method is better than other ones. The findings highlight the necessity of adapting ensemble methods to address spatial variability in geological data, thereby establishing a robust framework for ore grade estimation.
Exploration
shirin Jahanmiri; Ali Aalianvari; Malihehe Abbaszadeh
Abstract
Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and ...
Read More
Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and subsequent operational phases. Groundwater inflows, often perceived as rare geological hazards, can induce instability in the surrounding rock formations, leading to severe consequences such as injuries, fatalities, and substantial financial expenditures. The primary objective of this research is to explore the application of machine learning techniques to identify the most accurate method of forecasting tunnel water seepage. The prediction of water loss into the tunnel during the forecasting phase employed a tree equation based on gene expression programming (GEP). These results were compared with those obtained from a hybrid model comprising particle swarm optimization (PSO) and artificial neural networks (ANN). The Whale Optimization Algorithm (WOA) was selected and developed during the optimization phase. Upon contrasting the aforementioned methods, the Whale Optimization Algorithm demonstrated superior performance, precisely forecasting the volume of water lost into the tunnel with a correlation coefficient of 0.99. This underscores the effectiveness of advanced optimization techniques in enhancing the accuracy of groundwater inflow predictions and mitigating potential risks associated with tunneling activities.