Rock Mechanics
Jagdish Lohar; Neha Shrivastava
Abstract
India is a leading producer and exporter of dimensional marble. The processing of marble into dimensional and finished forms involves sawing, grinding, and polishing, generating significant quantities of Marble Processing Waste (MPW). Efforts for bulk recycling of MPW from the rapidly expanding marble ...
Read More
India is a leading producer and exporter of dimensional marble. The processing of marble into dimensional and finished forms involves sawing, grinding, and polishing, generating significant quantities of Marble Processing Waste (MPW). Efforts for bulk recycling of MPW from the rapidly expanding marble industry are essential due to significant environmental impacts, hindered by limited inclusion rates and complex processing requirements in current practices. Concurrently, the increased demand for geotechnical fill materials and the depletion of natural soils necessitates sustainable alternatives. Using MPW in geotechnical fills offers a viable solution, yet it lacks comprehensive characterization. The aim of this study is to evaluate MPW as a sustainable alternative to conventional geotechnical fill materials. In this study, a comprehensive analysis of MPW's physical, geotechnical, and electrochemical properties, along with its mineralogical, elemental, and chemical composition, was conducted. The findings show that MPW, being non-plastic and non-swelling with a grain size distribution and hydraulic conductivity similar to silty sands, can be used directly from disposal sites without further processing. Notably, MPW achieves a maximum dry density of 1.84 g/cm³ and exhibits internal friction angles of 36.5°, ensuring stability. Electrochemical analysis indicates low leachability risks, with pH levels of 8.1 and electrical resistivity of 6,200 ohm-cm. Scanning Electron Microscopy images reveal that MPW particles are irregular, with considerable angularity and surface roughness. These results position MPW as a viable and environmentally friendly alternative to conventional fill materials, with the potential to significantly reduce the exploitation of natural resources and advance sustainable waste management practices.
Rock Mechanics
Ajay Sharma; Neha Shrivastava
Abstract
The present study aims to assess the utility of construction and demolition (C&D) waste, specifically recycled concrete aggregates (RCA) and recycled brick aggregates (RBA), as fill materials in highway embankments. The assessment of slope stability is crucial in determining the suitability of any ...
Read More
The present study aims to assess the utility of construction and demolition (C&D) waste, specifically recycled concrete aggregates (RCA) and recycled brick aggregates (RBA), as fill materials in highway embankments. The assessment of slope stability is crucial in determining the suitability of any material for embankment fill. GeoStudio software is employed in this study for slope stability assessment of 12 models with LS, RCA, RBA, and their blends as embankment fill materials. The embankment configuration is designed to represent a six-lane highway (carriageway width = 13 m, adhering to IRC: 36 standards), featuring varying slope elevations (3 m, 6 m, and 9 m) and diverse horizontal to vertical slope ratios (H:V = 2:1, 1:1, 1:2, and 1:3). The Morgenstern-Price method is employed to analyze slope stability and determine factor of safety (FOS) values. The study highlights the impact of slope heights, slope ratios, and fill materials (RCA, RBA, LS, and their blends) on FOS values in embankment models. Incorporating RCA or RBA in LS significantly boosts embankment FOS, exceeding stability expectations beyond 45˚ slope angles, potentially reducing costs and required area in construction projects. The incorporation of RCA/RBA into LS increases the FOS values to a range of 1.38 to 5.91, indicating very stable slopes for highway embankments. Based on the findings, replacing LS with RCA or RBA in embankment fill can enhance environmental sustainability and economic efficiency. However, these slope stability results apply specifically to C&D waste with similar composition, grain size, geotechnical properties, and embankment conditions.