Exploitation
Gebremariam Mesele; Miruts Hagos; Bheemalingeswara Konka; Tsegabrhan Gebreset; Misgan Molla; N Rao Cheepurupalli; Girmay Hailu; Negassi Debeb; Assefa Hailesilasie
Abstract
The Dallol Depression, located in the northern Danakil Depression, has a complex geological history shaped by Afar rifting, containing approximately 1.7 km of evaporite deposits. These deposits, heavily influenced by volcanic activity and extensional tectonic faulting, exhibit significant structural ...
Read More
The Dallol Depression, located in the northern Danakil Depression, has a complex geological history shaped by Afar rifting, containing approximately 1.7 km of evaporite deposits. These deposits, heavily influenced by volcanic activity and extensional tectonic faulting, exhibit significant structural variability. This research focuses on the potash-bearing section of the salt sequence, which consists of several distinct layers including the marker bed, sylvinite member, upper carnallitite member, bischofitite member, lower carnallitite member, and kainitite member. Employing satellite imagery (Landsat Thematic Mapper), geological and structural mapping, borehole data, and seismic analysis, this study characterizes the sub-surface features of the evaporites and estimates their reserves. The RockWorks software facilitated the development of a subsurface stratigraphic map and a three-dimensional fence diagram for enhanced interpretation. Seismic data indicate that while the upper layers of the evaporite deposits are largely horizontal and undeformed, deeper layers exhibit considerable tectonic disturbance. Thickness variations were observed, with evaporite and alluvial deposits being thinner at the southeastern rim and thicker in the eastern concession center. The total potash reserve is estimated at approximately 2.96 billion tons, of which 877.76 million tons (29.60%) remain unexploited. Current borehole designs restrict the company's extraction capacity to 24.64%. This study recommends revising mining strategies, incorporating updated borehole designs and advanced geophysical methods to improve potash recovery and promote sustainable practices in the Dallol region.
Exploitation
Assefa Hailesilasie Wolearegay; Yowhas Birhanu Amare; Asmelash Abay Hagos; Kassa Amare Mesfin; Hagos Abraha; Bereket Gebresilassie; Nageswara Rao Cheepurupalli; Yewuhalashet Fissha
Abstract
The Dichinama area in northern Ethiopia is a potential source of dimension stone, but the quality of the marble has been a major challenge for mining operations. This research aims to evaluate the quality of dimension stone by conducting a comprehensive study involving geological mapping, geotechnical ...
Read More
The Dichinama area in northern Ethiopia is a potential source of dimension stone, but the quality of the marble has been a major challenge for mining operations. This research aims to evaluate the quality of dimension stone by conducting a comprehensive study involving geological mapping, geotechnical testing, and geochemical analysis. The study collected nine rock samples from three active mining sites in the Dichinama area, analyzing properties such as density, water absorption, compressive strength, flexural strength, and abrasion resistance. Additionally, ten samples were collected for geochemical analysis, focusing on parameters like calcite, CaO values, LOI, SiO2 content, and other oxide concentrations. The geotechnical tests revealed that the properties of the marble in the Dichinama area were mainly calcite, with compressive strength values ranging from 29.6 to 74.5 MPa, flexural strength from 7 to 52.5 MPa, abrasion resistance from 8.3 to 17.2, density from 2257 to 2562 kg/m3, and water absorption from 0.12 to 0.93. However, most of these parameters fell below the minimum ASTM standards for marble dimension stone. The results suggest that these inferior characteristics negatively affect the recovery and quality of the dimension stone.