Environment
Behnoosh khataei; Farhad Qaderi; Farzad Mosavat
Abstract
The increase in the number of factories, the industrialization of human life, and the increasing use of industrial paints have caused an increase in dye wastewater and consequent environmental pollution. Discharging wastewater containing the dyes mentioned above, which are often carcinogenic, is a severe ...
Read More
The increase in the number of factories, the industrialization of human life, and the increasing use of industrial paints have caused an increase in dye wastewater and consequent environmental pollution. Discharging wastewater containing the dyes mentioned above, which are often carcinogenic, is a severe threat to living organisms. In this research, a photocatalytic method (as an advanced oxidation method) using zinc oxide nanoparticles was investigated to treat the colored wastewater containing methylene blue. This type of nanoparticle is cheap (based on the used synthesis method), abundant and readily available, and low in toxicity. For this purpose, an evaluation of the optimal ratio between zinc acetate and polyvinylpyrrolidone for the synthesis of zinc oxide nanoparticles was carried out. Furthermore, the simultaneous decreasing and increasing effects of independent parameters (pH, irradiation time, methylene blue concentration, zinc acetate to PVP ratio) on the efficiency of the photocatalytic process and kinetic model were evaluated. The results showed that the best pollutant removal efficiency (91.7%) was obtained using the ratio of zinc acetate and polyvinylpyrrolidone equal to 33.67 in 60 minutes of irradiation time. This result shows that the lower ratio of zinc acetate to polyvinylpyrrolidone indicates higher dye removal.
M. Mahjoore; A. Aryafar; M. Honarmand
Abstract
In the present work, the cadmium oxide (CdO) nanoparticles (NPs) are synthesized using the Ferula extract. Ferula acts as a naturally-sourced reducing agent and stabilizer for the construction of the CdO NPs. The biosynthesized CdO NPs are characterized by different techniques such as X-ray powder diffraction ...
Read More
In the present work, the cadmium oxide (CdO) nanoparticles (NPs) are synthesized using the Ferula extract. Ferula acts as a naturally-sourced reducing agent and stabilizer for the construction of the CdO NPs. The biosynthesized CdO NPs are characterized by different techniques such as X-ray powder diffraction (XRD), Fourier transform-infrared (FT-IR), spectroscopy and field emission-scanning electron microscopy (FE-SEM). After ensuring a successful synthesis of the CdO NPs, their photocatalytic activity is studied for the degradation of ciprofloxacin antibiotic in aqueous media under the sunlight. Approximately 95% degradation of ciprofloxacin using the CdO NPs is achieved after 60 minutes. The recycling experiments confirm the high stability and durability of the CdO NPs. Therefore, this work illustrates an efficient strategy for the photo-degradation of ciprofloxacin, and provides a new insight into the removal of pharmaceutical contaminants in aquatic environments.