Rock Mechanics
Dariush Kaveh Ahangaran; Kaveh Ahangari; Mosleh Eftekhari
Abstract
Blast damage on the stability of the slopes plays an important role in the profitability and safety of mines. Determination of this damage is also revealed in the widely used Hoek-Brown failure criterion. Of course, this damage is used as a moderating factor in this failure criterion, and its accurate ...
Read More
Blast damage on the stability of the slopes plays an important role in the profitability and safety of mines. Determination of this damage is also revealed in the widely used Hoek-Brown failure criterion. Of course, this damage is used as a moderating factor in this failure criterion, and its accurate determination is considered an important challenge in rock engineering. This study aims to investigate the effect of geological structures in blast damage factor using 3D discrete element modeling of two slopes with different directions of geological discontinuities. The dynamic pressure of the explosion is also simulated in three blastholes. To ensure the modeling results, other dynamic properties of the model have been selected based on the proven studies. An analytical analysis was conducted based on the failure zones (blast damage area), and quantitative and qualitative analyses were performed using the recorded PPV values during the blasting simulation. The results show that the geological discontinuities control, damp, and reduce blast damage. The expansion of blast damage is reduced by 75% along with the increase in rock mass strength, and the blast damage can expand up to 33 meters along with the decrease in strength. By reducing the distance of discontinuities, the role of discontinuities in damping becomes greater than other properties of the rock mass and the discontinuities further away from the blasting hole create more damping. The relation between the distance from the Hole and PPV values shows that for more realistic slope stability analysis results, the values of the damage factor in the Hoek-Brown failure criterion should be applied gradually and decreasingly in layers parallel to the slope surface.
Bijan Afrasiabian; Kaveh Ahangari; Ali Noorzad
Abstract
High-level vibrations caused by blasting operations in open-pit mining can exert adverse effects such as destruction of surrounding surface structures. Therefore, it is essential to identify the factors effective in mitigating the damaging effects of ground vibration in open-pit mines, and monitor them. ...
Read More
High-level vibrations caused by blasting operations in open-pit mining can exert adverse effects such as destruction of surrounding surface structures. Therefore, it is essential to identify the factors effective in mitigating the damaging effects of ground vibration in open-pit mines, and monitor them. This study investigates the effects of some of the most important blast design parameters in a row of blast holes. According to the advantages of numerical methods, the 3D discrete element method is employed for this purpose. The Peak Particle Velocity (PPV) values are measured along the central hole at the distances of one meter. The results obtained demonstrate that an increase in the blast damage factor and inter-hole delay time results in higher PPV values. However, the increased delay time has no remarkable effect on reducing the development of the blast damage zone. On the other hand, as the decoupling increases, the PPV values diminish, leading to substantial reductions in the ground vibration and rock mass damage. It is also observed that the elimination of sub-drilling does not significantly reduce ground vibrations. The analysis of the results obtained from the numerical modeling show that the discontinuities of the rock mass act as a filter, which could decrease the wave energy by more than 90%. Moreover, it is found that the direction of the discontinuities also affects the emission of waves caused by the blast. The PPV values are reduced, and the damaged zone is less developed if the discontinuities are opposite of the slope surface.
Seyed Ahmad Mousavi; Kaveh Ahangari; Kamran Goshtasbi
Abstract
Blast and stress release create cracks, fractures, and excavation damage zone in the remaining rock mass. Bench health monitoring (BHM) is crucial regarding bench health and safety in blast dynamic loading. Several empirical criteria have been proposed for a quick estimation of different parameters of ...
Read More
Blast and stress release create cracks, fractures, and excavation damage zone in the remaining rock mass. Bench health monitoring (BHM) is crucial regarding bench health and safety in blast dynamic loading. Several empirical criteria have been proposed for a quick estimation of different parameters of a rock mass in the zone damaged by the blast. This work estimates the rock mass properties behind the blast hole based on the generalized Hoek-Brown failure criterion and quantitative disturbance factor (D). Considering a constant D value, either zero or one, for the entire rock mass, remarkably alters its strength and stability, resulting in very optimistic or very conservative analyses. Therefore, D is considered based on the elastic damage theory, and numerical simulation is conducted based on the finite difference software FLAC to investigate the vibration and damage threshold by monitoring the peak particle velocity (PPV) in the bench domain with different geometries. According to the numerical simulation, as the depth behind the blast hole increases, the value of D decreases from one to zero almost non-linearly, resulting in a non-linear reduction in the Hoek-Brown behavioral model properties. It is found that using various parameters of rock mass in the blast-induced damage zone behind the hole leads to thoroughly different PPV values than the constant parameters. Accordingly, the approach to using the quantified values of parameter D is of great importance in the estimation of various properties of a rock mass in the blast-induced zone, as well as calculation of the vibration.
A. Srivastava; B. Singh Choudhary; M. Sharma
Abstract
Blast-induced ground vibration (PPV) evaluation for a safe blasting is a long-established criterion used mainly by the empirical equations. However, the empirical equations are again considering a limited information. Therefore, using Machine Learning (ML) tools [Support Vector Machine (SVM) and Random ...
Read More
Blast-induced ground vibration (PPV) evaluation for a safe blasting is a long-established criterion used mainly by the empirical equations. However, the empirical equations are again considering a limited information. Therefore, using Machine Learning (ML) tools [Support Vector Machine (SVM) and Random Forest (RF)] can help in this context, and the same is applied in this work. A total of 73 blasts are monitored and recorded in this work. For the ML tools, the dataset is divided into the 80-20 ratio for the training and testing purposes in order to evaluate the performance capacity of the models. The prediction accuracies by the SVM and RF models in predicting the PPV values are satisfactory (up to 9% accuracy). The results obtained show that the coefficient of determination (R2) for RF and SVM is 0.81 and 0.75, respectively. Compared to the existing linear regressions, this work recommends using a machine learning regression model for the PPV prediction.
A. Siamaki; H. Bakhshandeh Amnieh
Abstract
A considerable amount of energy is released in the form of shock wave from explosive charge detonation. Shock wave energy is responsible for the creation of crushing and fracture zone around the blast hole. The rest of the shock wave energy is transferred to rock mass as ground vibration. Ground vibration ...
Read More
A considerable amount of energy is released in the form of shock wave from explosive charge detonation. Shock wave energy is responsible for the creation of crushing and fracture zone around the blast hole. The rest of the shock wave energy is transferred to rock mass as ground vibration. Ground vibration is conveyed to the adjacent structures by body and surface waves. Geological structures like faults, fractures, and fillings play important roles in the wave attenuation. Studying the mechanism of ground wave propagation from blasts gives a better understanding about the stress wave transmission and its effect on the near structures. In this research work, the stress wave transmissions from discontinuities and fillings were evaluated using a field measurement and a Universal Distinct Element Code (UDEC). A single-hole blast was conducted in the Kangir dam, and the resulting vibrations were measured in many points before and after the faults. Numerical simulation shows the effects of geo-mechanical properties of fillings on the reflection and refraction rate of the stress wave. There are more energy reflections in the rock boundaries and soil fillings, and more energy is absorbed by soil fillings compared with rock fillings. Furthermore, there is a close correlation between the ground vibration records for the Kangir dam and the numerical results. The maximum relative error between the actual records and the simulated ones was found to be 18.5%, which shows the UDEC ability for the prediction of blast vibrations.
Hassan Bakhsandeh Amnieh; Alireza Mohammadi; M Mozdianfard
Abstract
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting ...
Read More
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting can be achieved once peak particle velocity (PPV) is predicted. In this paper, the values of PPV have been predicted and compared using the artificial neural network (ANN), multivariate regression analysis (MVRA) and empirical relations. The necessary data were gathered from 11 blast operations in Sarcheshmeh copper mine, Kerman. The neural network input parameters include distance from blast point, maximum charge weight per delay, spacing, stemming and the number of drill-hole rows in each blasting operation. The network is of the multi-layer perception (MLP) type with 24 sets of training data including 2 hidden layers, 1 output layer with the network architecture of {5-11-12-1}, and Sigmoid tangent and linear transfer functions. To insure the training accuracy, the network was tested by 6 data sets; the determination coefficient and the average relative error were found to be 0.977 and 8.85%, respectively, showing the MLP network’s high capability and precision in estimating the values of the PPV. To predict these values, MVRA and empirical relations were analyzed. The results have revealed that these relations have low capability in estimating the PPV parameter.