Lokeshwar Singh Dilta; Ravi Kumar Sharma
Abstract
This study highlights the results from a series of analytical model experiments that investigate the behaviour of a strip footing supported by hollow steel piles installed to stabilize a clay slope. The effects of changing the pile diameter, pile length, spacing between piles, slope angle, the position ...
Read More
This study highlights the results from a series of analytical model experiments that investigate the behaviour of a strip footing supported by hollow steel piles installed to stabilize a clay slope. The effects of changing the pile diameter, pile length, spacing between piles, slope angle, the position of the pile row from the top of slope, and the footing placement are all examined. After determining the load-carrying capacity of unstabilized slopes, it is compared with the load-carrying capacity of stabilized slopes. The results are then analysed to see how each parameter affects the load carrying capacity of strip footing. The results of unstabilized cases reveal that the load carrying capacity of a footing decreases as the slope angle increases and increases when the footing is positioned away from the slope. In addition, the findings imply that by reinforcing clay slope with a sequence of hollow steel piles significantly enhances the load carrying capacity of strip footing. As the distance between piles is decreased and their length is increased, the bearing capacity of the footing increases, and this improvement is enhanced by increasing the diameter of the piles. When the row of pile is positioned away from the top of the slope, the footing’s load carrying capacity decreases. Also positioning the footing a quite distance apart from the crest slope shows reduction in bearing capacity ratio.
Vaibhav Sharma; Andy Kwame Yeboah; Joshua Asare; Natillio Pillay; Jaspreet Singh
Abstract
The presence of any underground cavity in the soil stratum can seriously harm the structural performance of the overlying facility. These may develop because of mining, tunneling, water, and gas networks or outdated channels. In the present investigation, a circular void is considered, and its effect ...
Read More
The presence of any underground cavity in the soil stratum can seriously harm the structural performance of the overlying facility. These may develop because of mining, tunneling, water, and gas networks or outdated channels. In the present investigation, a circular void is considered, and its effect on the surface strip footing (in the form of ultimate load (UL), ultimate settlement (US), footing tilting, and footing horizontal displacement (HD)) is studied using numerical simulation. The variable parameters are load eccentricity (e), load inclination (α), and geogrid reinforcement location (u). It is observed that as the load inclination and eccentricity increases, the UL decreases. For instance, in the unreinforced soil, u/B = 0, at load inclination of α = 0°, 10°, 20°, and 30°, the UL is 249, 200, 142, and 97 kN/m, respectively. Moreover, as the geo-grid location is changed, the UL first increases when placed near the footing (u/B = 0.10), and thereafter, starts to decrease as the distance between footing and geo-grid increases. For instance, the UL is 249, 278, 267, 260, 259, and 256 kN/m when e/B = 0.0, α = 0°, and u/B varies from 0 to 0.5 with an increment of 0.1. The tilting increases as the eccentricity is increased; for example, u/B = 0.0 for α = 0°; the tilting values are 0°, 0.12°, 0.31°, and 0.61°. Moreover, as the load eccentricity increases, the HD decreases (for u/B = 0.1 and α = 10°, the HD is 4.20, 3.5, 3.00, and 2.60 mm, respectively.