Exploitation
Alireza Afradi; Arash Ebrahimabadi
Abstract
Rock-fragmentation is generally regarded as a crucial indicator within the mining industry for evaluating the effects of blasting operations. In this work, a database was primarily constructed using field data to predict rock fragmentation in the mines of Anguran and Sarcheshmeh. The datasets comprised ...
Read More
Rock-fragmentation is generally regarded as a crucial indicator within the mining industry for evaluating the effects of blasting operations. In this work, a database was primarily constructed using field data to predict rock fragmentation in the mines of Anguran and Sarcheshmeh. The datasets comprised the input parameters such as Burden (m), spacing (m), powder factor (kg/m³), and stemming (m), with fragmentation (cm) as the output parameter. The analysis of these datasets was conducted using the Ant Lion Optimizer (ALO) and Crow Search Algorithm (CSA) methodologies. To assess the predictive models' accuracy, metrics including the coefficient of determination (R²), Variance Accounted For (VAF), and Root Mean Square Error (RMSE) were employed. The application of ALO and CSA to the database yielded results indicating that for ALO, R² = 0.99, RMSE = 0.005, and VAF (%) = 99.38, while for CSA, R² = 0.98, RMSE = 0.02, and VAF (%) = 98.11. Ultimately, the findings suggest that the predictive models yield satisfactory results, with ALO demonstrating a greater level of precision.
Exploitation
Marco Antonio Cotrina Teatino; Jairo Jhonatan Marquina Araujo; Jose Nestor Mamani Quispe; Solio Marino Arango-Retamozo; Johnny Henrry Ccatamayo-Barrios; Joe Alexis Gonzalez-Vasquez; Teofilo Donaires-Flores; Maxgabriel Alexis Calla-Huayapa
Abstract
Mining plays a crucial role in the economy of many countries, contributing significantly to GDP, employment, and industrial development. However, optimizing drilling and blasting operations remains a key challenge in open-pit mining due to its direct impact on operational costs and rock fragmentation ...
Read More
Mining plays a crucial role in the economy of many countries, contributing significantly to GDP, employment, and industrial development. However, optimizing drilling and blasting operations remains a key challenge in open-pit mining due to its direct impact on operational costs and rock fragmentation efficiency. This work aims to optimize fragmentation (X50) and drilling and blasting costs using hybrid machine learning models, an innovative approach that improves predictive accuracy and economic feasibility. Six models were developed: Artificial Neural Networks (ANNs), Decision Trees (DT), Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Regression (SVR), optimized using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The dataset, comprising 100 blasts, was split into 70% for training and 30% for testing. The SVR+PSO model achieved the highest accuracy for fragmentation prediction, with an RMSE of 0.27, MAE of 0.21, and R2 of 0.92. The RF+GA model was most effective for cost prediction, with an RMSE of 414.58, MAE of 354.14, and R2 of 0.99. Optimization scenarios were implemented by reducing burden (4.3 m to 3.8 m) and spacing (5.0 m to 4.5 m), achieving a 5.7% reduction in X50 (17.6 cm to 16.6 cm) and a 9.5% cost decrease (63,000 USD to 57,000 USD per blast). Predictions for 30 future blasts using the RF + GA model estimated a total cost of 1.7 MUSD, averaging 55,180 USD per blast. These findings confirm the effectiveness of machine learning in cost optimization and improving blasting efficiency, presenting a robust data-driven approach to optimizing mining operations.
Exploitation
Sri Chandrahas; Bhanwar Singh Choudhary; MS Venkataramayya; Yewuhalashet Fissha; Blessing Olamide Taiwo
Abstract
To conducting efficient blasting operations, one needs to analyze the bench geology, structural and dimensional parameters to obtain the required optimum fragmentation with minimum amount of ground vibration. Joints presence causes difficulty during drilling and subsequent rock breakage mechanism. An ...
Read More
To conducting efficient blasting operations, one needs to analyze the bench geology, structural and dimensional parameters to obtain the required optimum fragmentation with minimum amount of ground vibration. Joints presence causes difficulty during drilling and subsequent rock breakage mechanism. An idea on joints density will give an idea on deciding with column charging in-terms of decking-stemming and firing patterns. The goal of the research is to develop a hybrid algorithm model to predict joints width and joint angle. In order to achieve the task, advanced softwares, machine learning models and a field data tests were used in this study.