Exploration
Moslem Jahantigh; Hamid Reza Ramazi
Abstract
The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential ...
Read More
The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential layers include airborne magnetic data, airborne radiometric data (potassium and thorium), lineament density map, cu geochemistry signature, and multi-variate geochemistry signature (PC1). High magnetic anomalies, lineament structures, and alteration zones (K/Th) were derived from airborne geophysics data. Geochemistry signatures (Cu and PC1) were derived from stream sediment data. The principal Component Analysis (PCA) as an unsupervised machine learning method and five evidential layers were used to produce a porphyry prospectivity model. As a result of this combination, mineral prospectivity model was produced. Then a plot of cumulative percent of the studied area versus pca prospectivity value was used to discrete high potential areas. Then to evaluate the ability of this MPM, the location of known cu indications was used. The results confirm an acceptable outcome for porphyry prospectivity modeling. Based on this model high-potential areas are located in south southwestern and eastern parts of the studied area.
Exploitation
S. Barak; A. Bahroudi; G. Jozanikohan
Abstract
The purpose of mineral exploration is to find ore deposits. The main aim of this work is to use the fuzzy inference system to integrate the exploration layers including the geological, remote sensing, geochemical, and magnetic data. The studied area was the porphyry copper deposit of the Kahang area ...
Read More
The purpose of mineral exploration is to find ore deposits. The main aim of this work is to use the fuzzy inference system to integrate the exploration layers including the geological, remote sensing, geochemical, and magnetic data. The studied area was the porphyry copper deposit of the Kahang area in the preliminary stage of exploration. Overlaying of rock units and tectonic layers were used to prepare the geological layer. ASTER images were used for the purpose of recognition of the alterations. The processes used for preparation of the alteration layer were the image-based methods including RGB, band ratio, and principal component analysis as well as the spectrum-based methods including spectral angel mapper and spectral feature fitting. In order to prepare the geochemical layer, the multivariate statistical methods such as the Pearson correlation matrix and cluster analysis were applied on the data, which showed that both copper and molybdenum were the most effective elements of mineralization. Application of the concentration-number multi-fractal modeling was used for geochemical anomaly separation, and finally, the geochemical layer was obtained by the overlaying of two prepared layers of copper and molybdenum. In order to prepare the magnetics layer, the analytical signal map of the magnetometry data was selected. Finally, the FIS integration was applied on the layers. Ultimately, the mineral potential map was obtained and compared with the 33 drilled boreholes in the studied area. The accuracy of the model was validated upon achieving the 70.6% agreement percentage between the model results and true data from the boreholes, and consequently, the appropriate areas were suggested for the subsequent drilling.