Exploration
Moslem Jahantigh; Hamid Reza Ramazi
Abstract
Fuzzy c-means (FCM) is an unsupervised machine learning algorithm. This method assists in integrating airborne geophysics data and extracting automatic geological map. This paper tries to combine airborne geophysics data consisting of aeromagnetic, potassium, and thorium layers to classify the lithological ...
Read More
Fuzzy c-means (FCM) is an unsupervised machine learning algorithm. This method assists in integrating airborne geophysics data and extracting automatic geological map. This paper tries to combine airborne geophysics data consisting of aeromagnetic, potassium, and thorium layers to classify the lithological map of the Shahr-e-Babak area, a world-class porphyry area in the south of Iran. The resulting clusters with FCM show appropriate coincidence with the geological map of the study area. The clusters are adapted with high magnetic anomalies corresponding to the mafic volcanic rocks and the clusters with high radiometric signature associated with igneous rocks. The cluster is associated with low magnetic anomaly and low radioelements concentration representing sedimentary rocks. some clusters are associated with two or more lithological formations due to similar signatures of geophysics properties. The fuzzy score membership in all clusters is above 0.71 indicating a high correlation between geological signatures and multigeophysical data. This study shows geophysical signatures analyzed with the machine learning method can reveal geological units.
Exploration
Moslem Jahantigh; Hamid Reza Ramazi
Abstract
The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential ...
Read More
The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential layers include airborne magnetic data, airborne radiometric data (potassium and thorium), lineament density map, cu geochemistry signature, and multi-variate geochemistry signature (PC1). High magnetic anomalies, lineament structures, and alteration zones (K/Th) were derived from airborne geophysics data. Geochemistry signatures (Cu and PC1) were derived from stream sediment data. The principal Component Analysis (PCA) as an unsupervised machine learning method and five evidential layers were used to produce a porphyry prospectivity model. As a result of this combination, mineral prospectivity model was produced. Then a plot of cumulative percent of the studied area versus pca prospectivity value was used to discrete high potential areas. Then to evaluate the ability of this MPM, the location of known cu indications was used. The results confirm an acceptable outcome for porphyry prospectivity modeling. Based on this model high-potential areas are located in south southwestern and eastern parts of the studied area.
B. Shokouh Saljoughi; A. Hezarkhani
Abstract
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of wavelet neural network (WNN) technique in ore grade estimation, which is based on integration between wavelet theory and Artificial Neural Network (ANN). Different wavelets are applied as activation ...
Read More
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of wavelet neural network (WNN) technique in ore grade estimation, which is based on integration between wavelet theory and Artificial Neural Network (ANN). Different wavelets are applied as activation functions to estimate Cu grade of borehole data in the hypogene zone of porphyry ore deposit, Shahr-e-Babak district, SE Iran. WNN parameters such as dilation and translation are fixed and only the weights of the network are optimized during its learning process. The efficacy of this type of network in function learning and estimation is compared with Ordinary Kriging (OK). Secondly, we aim to delineate the potassic and phyllic alteration regions in the hypogene zone of Cu porphyry deposit based on the estimation obtained of WNN and OK methods, and utilize Concentration–Volume (C–V) fractal model. In this regard, at first C–V log–log plots are generated based on the results of OK and WNN. The plots then are used to determine the Cu threshold values of the alteration zones. To investigate the correlation between geological model and C-V fractal results, the log ratio matrix is applied. The results showed that, Cu values less than 1.1% from WNN have more overlapped voxels with phyllic alteration zone by overall accuracy (OA) of 0.74. Spatial correlation between the potassic alteration zones resulted from 3D geological modeling and high concentration zones in C-V fractal model showed that the alteration zone has Cu values between 1.1% and 2.2% with OA of 0.72 and finally have an appropriate overlap with Cu values greater than 2.2% with OA of 0.7. Generally, the results showed that the WNN (Morlet activation function) with OA greater than OK can be can be a suitable and robust tool for quantitative modeling of alteration zones, instead of qualitative methods.
Environment
B. Shokouh Saljoughi; A. Hezarkhani
Abstract
The Shahr-e-Babak district, as the studied area, is known for its large Cu resources. It is located in the southern side of the Central Iranian volcano–sedimentary complex in SE Iran. Shahr-e-Babak is currently facing a shortage of resources, and therefore, mineral exploration in the deeper and ...
Read More
The Shahr-e-Babak district, as the studied area, is known for its large Cu resources. It is located in the southern side of the Central Iranian volcano–sedimentary complex in SE Iran. Shahr-e-Babak is currently facing a shortage of resources, and therefore, mineral exploration in the deeper and peripheral spaces has become a high priority in this area. This work aims to identify the geochemical anomalies associated with the Cu mineralization using the Spectrum–Area (S–A) multi-fractal and Wavelet Neural Network (WNN) methods. At first, the Factor Analysis (FA) is applied to integrate the multi-geochemical variables of a regional stream sediment dataset related to major mineralization elements in the studied area. Then the S–A model is applied to decompose the mixed geochemical patterns obtained from FA and compare with the results obtained from the WNN method. The S–A model, based on the distinct anisotropic scaling properties, reveals the local anomalies due to the consideration of the spatial characteristics of the geochemical variables. Most of the research works show that the capability (i.e. classification, pattern matching, optimization, and prediction) of an ANN considering its successful application is suitable for inheriting uncertainties and imperfections that are found in mining engineering problems. In this paper, an alternative method is presented for mineral prospecting based on the integration of wavelet theory and ANN or wavelet network. The results obtained for the WNN method are in a good agreement with the known deposits, indicating that the WNN method with Morlet transfer function consists of a highly complex ability to learn and track unknown/undefined complicated systems. The hybrid method of FA, S–A, and WNN employed in this work is useful to identify anomalies associated with the Cu mineralization for further exploration of mineral resources.
B. Shokouh Saljoughi; A. Hezarkhani; E. Farahbakhsh
Abstract
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become ...
Read More
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising areas for future explorations, most of which are very time-consuming and costly. The main goal of mineral prospecting is applying a transparent and robust approach for identifying high potential areas to be explored further in the future. This work presents the procedure taken to create two different Cu-mineralization prospectivity maps. The first map is created using a knowledge-driven fuzzy technique and the second one by a data-driven Artificial Neural Network (ANN) approach. In this study aim is to investigate the results of applying the ANN technique and to compare them with the outputs of applying the fuzzy logic method. The geo-datasets employed for creating evidential maps of porphyry Cu mineralization include the solid geology map, alteration map, faults, dykes, airborne total magnetic intensity, airborne gamma-ray spectrometry data (U, Th, K and total count), and known Cu occurrences. Based on this study, the ANN technique is a better predictor of Cu mineralization compared to the fuzzy logic method. The ANN technique, due to capabilities such as classification, pattern matching, optimization, and prediction, is useful in identifying the anomalies associated with the Cu mineralization.