Mineral Processing
Meysam Nikfarjam; Ardeshir Hezarkhani; Farhad Azizafshari; Hamidreza Golchin
Abstract
Geometallurgical modeling (GM) plays a crucial role in the mining industry, enabling a comprehensive understanding of the complex relationship between geological and metallurgical factors. This study focuses on evaluating metallurgical varibles at the Sungun Copper mine in Iran by measuring and predicting ...
Read More
Geometallurgical modeling (GM) plays a crucial role in the mining industry, enabling a comprehensive understanding of the complex relationship between geological and metallurgical factors. This study focuses on evaluating metallurgical varibles at the Sungun Copper mine in Iran by measuring and predicting process properties, including semi-autogenous power index (SPI), recovery (Re), and concentration grade. To overcome the additivity limitations of geostatistical methods, we utilized machine learning algorithms for enhanced predictive modeling, aiming to improve decision-making and optimize mining operations in geometallurgy. The research incorporates crucial data inputs such as sample coordinates, grades, lithology, mineralization zones, and alteration to assess the accuracy and reliability of different machine learning regression methods. The Relative Standard Deviation (RSD) is highlighted as a significant metric for comparing the accuracy of predicted process properties. Evaluation metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2) further confirm the superiority of specific modeling methods in certain scenarios. The K-Nearest Neighbors (KNN) method exhibits superior accuracy, lower error metrics (RMSE and MAE), and a higher R2 for modeling the SPI test. For modeling Cu grade in concentrate, Support Vector Regression (SVR) proves to be effective and reliable, outperforming the Multilayer Perceptron (MLP) method. Despite MLP's high R2, its higher RSD suggests increased uncertainty and variability in the predictions. Therefore, SVR is considered more suitable for modeling Cu grade in concentrate. Findings optimize operations at Sungun Copper mine, improving decision-making, efficiency, and profitability.
Mineral Processing
Mehrshad Asghari; Mohammad Noaparast; Mohammad Jahani Chegeni
Abstract
Because roller screens are connected to the pelletizing discs on one side and the green iron ore induration furnaces on the other side in pelletizing plants, they play a crucial role in the plant's productivity and steel production process. Consequently, an optimal performance and structural design are ...
Read More
Because roller screens are connected to the pelletizing discs on one side and the green iron ore induration furnaces on the other side in pelletizing plants, they play a crucial role in the plant's productivity and steel production process. Consequently, an optimal performance and structural design are essential in this context. A significant issue with roller screens during the classification of green pellets is the deformation of the rolls caused by the force exerted by the pellets during operation. This deformation disrupts the uniformity of the gap between the rolls, thereby reducing the efficiency of the screen, and the overall performance of the circuit, as well. Despite the importance of this issue, no studies have been conducted to investigate the force exerted by the pellets during classification on the screen or the subsequent mechanical behavior of the rolls. Therefore, this study employs the discrete element method–finite element method (DEM-FEM) coupling simulation technique to examine, for the first time, the mechanical behavior of rolls and to optimize their structural design. The results indicated that decreasing the roll diameter from 80 mm to 30 mm led to 1088 times increase in the average total deformation of the rolls. Furthermore, increasing the thickness of the polyurethane liner from 3 mm to 14 mm caused the average total deformation to rise by 54 times.
Mineral Processing
Chaimae LOUDARI; Moha Cherkaoui; Imad El Harraki; Rachid Bennani; Mohamed El Adnani; EL Hassan Abdelwahed; Intissar Benzakour; François Bourzeix; Karim Baina
Abstract
Energy efficiency and product quality control are critical concerns in grinding mill operations, particularly within the innovative context of Mine 4.0. This study introduces a novel Genetic Algorithm (GA)-based optimization framework specifically developed to address these challenges. Given the mining ...
Read More
Energy efficiency and product quality control are critical concerns in grinding mill operations, particularly within the innovative context of Mine 4.0. This study introduces a novel Genetic Algorithm (GA)-based optimization framework specifically developed to address these challenges. Given the mining industry’s significant energy consumption, especially in grinding processes, the proposed approach optimizes key parameters such as feed composition, water flow rates, and power consumption levels, while maintaining sieve refusal near the target threshold of 20%. Using real operational data from a Moroccan plant, the GA achieved a Mean Absolute Error (MAE) of 0.47, outperforming Simulated Annealing (SA) and Particle Swarm Optimization (PSO), which yielded MAEs of 1.14 and 0.74, respectively. The GA also demonstrated superior convergence stability and robustness, as evidenced by lower variability in predicted power consumption. These results validate the effectiveness of the GA framework in navigating nonlinear, high-dimensional parameter spaces and improving energy efficiency while ensuring product quality consistency. Ultimately, this research confirms the potential of metaheuristic optimization in enhancing grinding mill efficiency and supports the broader shift towards intelligent and sustainable mining operations under the Mine 4.0 paradigm.
Mineral Processing
Sahil Thakur; Ravi Kumar Sharma
Abstract
Slope stability is critical for infrastructure safety, particularly in seismically active regions. This work evaluates the stability of a slope along the Baroti-Reyur road in Himachal Pradesh, located in Zone 5, using a novel combination of Limit Equilibrium Methods (LEMs) and Finite Element Methods ...
Read More
Slope stability is critical for infrastructure safety, particularly in seismically active regions. This work evaluates the stability of a slope along the Baroti-Reyur road in Himachal Pradesh, located in Zone 5, using a novel combination of Limit Equilibrium Methods (LEMs) and Finite Element Methods (FEMs). The analysis examines natural slope conditions and the impact of sustainable mitigation measures, including retaining structures and bioengineering techniques, under the static and dynamic conditions. The soil model incorporated a modulus of elasticity (E) of 90,000 kN/m², and a poisson's ratio (v) of 0.3 to reflect realistic slope-soil-structure interactions. Retaining structures such as gravity, cantilever, and gabion walls (4 m, 6 m, and 5 m high) were constructed using M30 RCC and Fe500 steel. Bioengineering measures featured deep-rooted grasses like Vetiver and Broom grass to improve soil cohesion (c), shrubs like Lantana camara for surface stability, and trees like Albizia lebbeck to reinforce deeper soil layers. These vegetation-based interventions enhanced slope resilience, while promoting ecological restoration. Theoretical LEM analysis revealed marginal stability, with static FOS values of 1.1 and pseudo-static FOS of 1.05. GEO5 pseudo-static analysis indicated critically low FOS value of 0.88 for dynamic saturated conditions, improving to 2.01 with retaining structures. FEM analysis using PLAXIS 2D provided more detailed insights, capturing complex soil-structure interactions with a static FOS of 1.028 and dynamic FOS of 0.994. By combining FEM with sustainable mitigation strategies, this work offers a framework for resilient slope stabilization, ensuring safety, while promoting environmental sustainability in seismically active regions.
Mineral Processing
Sahil Kumar; Ravi Kumar Sharma
Abstract
Landslides affecting life and property losses has become a serious threat in various countries worldwide which highlights the importance of slope stability and mitigation. The methods and tools employed for slope stability analysis, ranging from traditional limit equilibrium methods to worldly-wise numerical ...
Read More
Landslides affecting life and property losses has become a serious threat in various countries worldwide which highlights the importance of slope stability and mitigation. The methods and tools employed for slope stability analysis, ranging from traditional limit equilibrium methods to worldly-wise numerical modelling techniques. It focuses on the importance of accurate and reliable data collection, including geotechnical investigations, in developing precise slope stability assessments. Further, it also addresses challenges associated with predicting and mitigating slope failures, particularly in dynamic and complex environments. Mitigation strategies for unstable slopes were systematically reviewed of different researchers, encompassing both traditional and innovative measures. Traditional methods, such as retaining walls and drainage systems, the mitigation strategies were explored, emphasizing both preventive measures and remedial interventions. These include the implementation of engineering solutions such as slope structures, and Matrix Laboratory (MATLAB) techniques along with the comprehensive analysis of four prominent slope stability assessment tools: Rock Mass Rating (RMR), Slope Mass Rating (SMR), and the Limit Equilibrium Method (LEM). The comparative analysis of these tools highlights their respective strengths, limitations, and areas of application, providing researchers, authors, and practitioners with valuable insights to make informed choices based on project-specific requirements. To ensure the safety and sustainability of civil infrastructure, a thorough understanding of geological, geotechnical, and environmental factors in combination with cutting-edge technologies is required. Furthermore, it highlights the important role that slope stability assessment and mitigation play a major role in civil engineering for infrastructure development and mitigation strategies.
Mineral Processing
Rahul Shakya; Manendra Singh
Abstract
Due to the critical nature of seismic risk in metro tunnels, the seismic response of underground tunnels is a highly delicate topic. The seismic response of a sub-surface structure depends more on the properties of the surrounding ground and the induced earth deformation during an earthquake than on ...
Read More
Due to the critical nature of seismic risk in metro tunnels, the seismic response of underground tunnels is a highly delicate topic. The seismic response of a sub-surface structure depends more on the properties of the surrounding ground and the induced earth deformation during an earthquake than on the structure's inertial properties. This paper examines the seismic response of a typical section of the underground tunnel of Delhi Metro Rail Corporation (DMRC) between Rajiv Square and Patel Square in New Delhi's Connaught Place. Three-dimensional elasto-plastic analysis of Delhi metro underground tunnels under the seismic loading has been performed by finite element method using the Plaxis 3D software. Additionally, the influence of various boundary conditions on the dynamic response of metro tunnels has been examined. A comparison of the three-dimensional analysis with the two-dimensional plane-strain analysis has also been made. Horizontal displacements were experienced maximum compared to the longitudinal and vertical displacements in the soil-tunnel system. In dynamic analysis, the absorbent boundary is much more effective in controlling the displacements and the induced acceleration than the elementary boundary or the free-field boundary.
Mineral Processing
Zehra Khan; Abhishek Sharma
Abstract
Due to rapid growth in infrastructure sector, the construction of high-rise buildings is becoming very popular among all the countries. Engineers face significant issues with high rise buildings, particularly in terms of structural and foundation aspects. Many old design approaches can't be used with ...
Read More
Due to rapid growth in infrastructure sector, the construction of high-rise buildings is becoming very popular among all the countries. Engineers face significant issues with high rise buildings, particularly in terms of structural and foundation aspects. Many old design approaches can't be used with certainty since they involve extrapolation far beyond the domains of existing experience, hence structural and geotechnical engineers are being compelled to use more advanced analysis and design methodologies. The current study is an attempt to predict the bearing capacity and settlement behavior of piled-raft footing when embedded into cohesionless deposit. The numerical analysis has been carried out to examine the effect of numerous key parameters of pile and raft such as pile length (10, 15, 20 m), pile diameter (0.3, 0.4, 0.5 m), pile number (16, 20, 24), pile spacing (2D, 3D, 4D) (where “D” is diameter of the pile), raft thickness (0.4, 0.5, 0.6 m), and angle of internal friction of soil (25°, 30°, 35°) on load-settlement behavior of the piled- raft foundation using ABAQUS software. A constant spacing between the piles, i.e. 3D was used throughout the analysis. The results of numerical investigation revealed an improvement in bearing capacity and a reduction in settlement value on increasing length, diameter and number of piles and also with increasing angle of internal friction. The current study not only increases the bearing capacity of the foundation but provides a cost-effective foundation technique to engineers.