[1]. Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. (2019). Exploration information systems–A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.
[2]. Ghezelbash, R., Maghsoudi, A., Shamekhi, M., Pradhan, B., & Daviran, M. (2023). Genetic algorithm to optimize the SVM and K-means algorithms for mapping of mineral prospectivity. Neural Computing and Applications, 35(1), 719-733.
[3]. Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94-106.
[4]. Bai, H., Cao, Y., Zhang, H., Wang, W., Jiang, C., & Yang, Y. (2022). Applying Data-Driven-Based Logistic Function and Prediction-Area Plot to Map Mineral Prospectivity in the Qinling Orogenic Belt, Central China. Minerals, 12(10), 1287.
[5]. Hajihosseinlou, M., Maghsoudi, A., & Ghezelbash, R. (2024). Stacking: A novel data-driven ensemble machine learning strategy for prediction and mapping of Pb-Zn prospectivity in Varcheh district, west Iran. Expert Systems with Applications, 237, 121668.
[6]. Abedi, M., Kashani, S. B. M., Norouzi, G. H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146.
[7]. Yousefi, M., Yousefi, S., & Kamkar Rouhani, A. G. (2023). Recognition coefficient of spatial geological features, an approach to facilitate criteria weighting for mineral exploration targeting. International Journal of Mining and Geo-Engineering.
[8]. Ghezelbash, R., & Maghsoudi, A. (2018). Application of hybrid AHP-TOPSIS method for prospectivity modeling of Cu porphyry in Varzaghan district, Iran. Scientific Quarterly Journal of Geosciences, 28(109), 33-42.
[9]. Sabbaghi, H., & Tabatabaei, S. H. (2023). Data-driven logistic function for weighting of geophysical evidence layers in mineral prospectivity mapping. Journal of Applied Geophysics, 212, 104986.
[10]. Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, G. R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.
[11]. Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier.
[12]. Coolbaugh, M. F., Raines, G. L., & Zehner, R. E. (2007). Assessment of exploration bias in data-driven predictive models and the estimation of undiscovered resources. Natural Resources Research, 16, 199-207.
[13]. Ghadiri-Sufi, E., & Yousefi, M. (2016). Combination of data-and knowledge-driven fuzzy approaches in mineral potential modeling for generating target areas. Scientific Quarterly Journal of Geosciences, 25(98), 11-18.
[14]. Shabani, A., Ziaii, M., Monfared, M. S., Shirazy, A., & Shirazi, A. (2022). Multi-Dimensional Data Fusion for Mineral Prospectivity Mapping (MPM) Using Fuzzy-AHP Decision-Making Method, Kodegan-Basiran Region, East Iran. Minerals, 12(12), 1629.
[15]. Bahrami, Y., Hasani, H., & Maghsoudi, A. (2021). Application of AHP-TOPSIS method to model copper mineral potencial in the Abhar 1: 100000 geological map, NW Iran. Researches in Earth Sciences, 12(1), 41-57.
[16]. Zhang, N., & Zhou, K. (2015). Mineral prospectivity mapping with weights of evidence and fuzzy logic methods. Journal of Intelligent & Fuzzy Systems, 29(6), 2639-2651.
[17]. Yousefi, M., & Carranza, E. J. M. (2015). Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72-79.
[18]. Ghadiyanloo, M., Alimoradi, A., & Yousefi, M. (2022). Recognizing Porphyry Copper Mineralization Targets in Chahar-Gonbad Area of Kerman Province Using Extreme Learning Intelligent Method. Journal of Mineral Resources Engineering, 7(1), 39-61.
[19]. Hajihosseinlou, M., Maghsoudi, A., & Ghezelbash, R. (2023). A Novel Scheme for Mapping of MVT-Type Pb–Zn Prospectivity: LightGBM, a Highly Efficient Gradient Boosting Decision Tree Machine Learning Algorithm. Natural Resources Research, 1-22.
[20]. Yousefi, M., Barak, S., Salimi, A., & Yousefi, S. (2023). Should Geochemical Indicators Be Integrated to Produce Enhanced Signatures of Mineral Deposits? A Discussion with Regard to Exploration Scale. Journal of Mining and Environment, 14(3), 1011-1018.
[21]. Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., & Mihalasky, M. J. (2022). Recognition and incorporation of mineralization-efficient fault systems to produce a strengthened anisotropic geochemical singularity. Journal of Geochemical Exploration, 235, 106967.
[22]. Chen, J., Yousefi, M., Zhao, Y., Zhang, C., Zhang, S., Mao, Z., ... & Han, R. (2019). Modelling ore-forming processes through a cosine similarity measure: Improved targeting of porphyry copper deposits in the Manzhouli belt, China. Ore Geology Reviews, 107, 108-118.
[23]. Yousefi, M., & Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[24]. Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical exploration, 51(2), 109-130.
[25]. Carranza, E. J. M., & Hale, M. (1997). A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines. Journal of Geochemical Exploration, 60(2), 157-171.
[26]. Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111(1-2), 13-22.
[27]. Mokhtari, A. R., & Nezhad, S. G. (2015). A modified equation for the downstream dilution of stream sediment anomalies. Journal of Geochemical Exploration, 159, 185-193.
[28]. Shahrestani, S., & Mokhtari, A. R. (2017). Improved detection of anomalous catchment basins by incorporating drainage density in dilution correction of geochemical residuals. Geochemistry: Exploration, Environment, Analysis, 17(3), 194-203.
[29]. Ghezelbash, R., & Maghsoudi, A. (2018). Comparison of U-spatial statistics and C–A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran. Comptes Rendus Geoscience, 350(4), 180-191.
[30]. Seyedrahimi-Niaraq, M., & Mahdiyanfar, H. (2021). Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry, 81(4), 125830.
[31]. Yilmaz, H., Yousefi, M., Parsa, M., Sonmez, F. N., & Maghsoodi, A. (2019). Singularity mapping of bulk leach extractable gold and− 80# stream sediment geochemical data in recognition of gold and base metal mineralization footprints in Biga Peninsula South, Turkey. Journal of African Earth Sciences, 153, 156-172.
[32]. Zuo, R., & Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164, 33-41.
[33]. Meigoony, M. S., Afzal, P., Gholinejad, M., Yasrebi, A. B., & Sadeghi, B. (2014). Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1: 100,000 sheet, Central Iran. Arabian Journal of Geosciences, 7, 5333-5343.
[34]. Saadati, H., Afzal, P., Torshizian, H., & Solgi, A. (2020). Geochemical exploration for lithium in NE Iran using the geochemical mapping prospectivity index, staged factor analysis, and a fractal model. Geochemistry: Exploration, Environment, Analysis, 20(4), 461-472.
[35]. Shamseddin Meigooni, M., Lotfi, M., Afzal, P., Nezafati, N., & Razi, M. K. (2021). Application of multivariate geostatistical simulation and fractal analysis for detection of rare-earth element geochemical anomalies in the Esfordi phosphate mine, Central Iran. Geochemistry: Exploration, Environment, Analysis, 21(2), geochem2020-035.
[36]. Hosseini, S. A., Khah, N. K. F., Kianoush, P., Afzal, P., Ebrahimabadi, A., & Shirinabadi, R. (2023). Integration of fractal modeling and correspondence analysis reconnaissance for geochemically high-potential promising areas, NE Iran. Results in Geochemistry, 11, 100026.
[37]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2023). Integration of Fractal and Multivariate Principal Component Models for Separating Pb-Zn Mineral Contaminated Areas. Journal of Mining and Environment, 14(3), 1019-1035.
[38]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2022). Improvement of geochemical prospectivity mapping using power spectrum–area fractal modelling of the multi-element mineralization factor (SAF-MF). Geochemistry: Exploration, Environment, Analysis, 22(4), geochem2022-015.
[39]. Geranian, H. (2021). Application of multivariate transformation methods in geochemical data analysis of Hemych exploration area, South Khorasan Province. Journal of Analytical and Numerical Methods in Mining Engineering, 11(27), 1-18.
[40] Saremi, M., Yousefi, M., & Yousefi, S. (2023). Separation of geochemical anomalies related to hydrothermal copper mineralization using staged factor analysis in Feyzabad geological map.
Journal of Analytical and Numerical Methods in Mining Engineering, in press,
10.22034/ANM.2023.19986.1593.
[41]. Ziaii, M., Pouyan, A. A., & Ziaei, M. (2009). Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies. Journal of Geochemical Exploration, 100(1), 25-36.
[42]. Pirdadeh Beyranvand, D., Arian, M. A., Farhadinejad, T., & Ashja Ardalan, A. (2021). Identification of Geochemical Distribution of REEs Using Factor Analysis and Concentration-Number (CN) Fractal Modeling in Granitoids, South of Varcheh 1: 100000 Sheet, Central Iran. Iranian Journal of Earth Sciences, 13(4), 288-289.
[43]. Wu, R., Chen, J., Zhao, J., Chen, J., & Chen, S. (2020). Identifying geochemical anomalies associated with gold mineralization using factor analysis and spectrum–area multifractal model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China. Minerals, 10(3), 229.
[44]. Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied geochemistry, 17(3), 185-206.
[45]. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14(1), 45-58.
[46]. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24-35.
[47]. A. Behroozi., "Geological map of Iran 1: 100,000 series, Feizabad. Geological Survey of Iran, Tehran (In Persian)," ed. 1987.
[48]. Saadat, S., & Ghoorchi, M. (2009). Primary analysis for enhancing the iron oxide and alteration minerals, using ETM+ data: a case study of Kuh-e-Zar gold deposit, NE Iran.
[49]. Ghezelbash, R., Maghsoudi, A., Daviran, M., & Yilmaz, H. (2019). Incorporation of principal component analysis, geostatistical interpolation approaches and frequency-space-based models for portraying the Cu-Au geochemical prospects in the Feizabad district, NW Iran. Geochemistry, 79(2), 323-336.
[50]. Daviran, M., Maghsoudi, A., Ghezelbash, R., & Pradhan, B. (2021). A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach. Computers & Geosciences, 148, 104688.
[51]. Yousefi, M., Kamkar-Rouhani, A., & Alipoor, M. (2014). Increasing the Exploration Success and Intensify of Stream Sediment Geochemical Halos Using Recognizing and Omitting the Non-Predictive Factors, Case Studies: Fluorite and Copper Mineralization. Scientific Quarterly Journal of Geosciences, 24(93), 85-92.
[52]. Moghadam, H. S., Li, X. H., Ling, X. X., Santos, J. F., Stern, R. J., Li, Q. L., & Ghorbani, G. (2015). Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry. Lithos, 216, 118-135.
[53]. Yousefi, M., & Carranza, E. J. M. (2015). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69-81.