Rock Mechanics
Dariush Mohammadi; Kourosh Shahriar; Parviz Moarefvand; Ebrahim Farrokh
Abstract
The correct design of the cutterhead of a tunnel boring machine (TBM) plays a vital role in the efficient operation of the machine, as the cutterhead structure remains unchanged during the tunneling project. This paper aims to elucidate the fundamental principles in the design of the cutterhead opening ...
Read More
The correct design of the cutterhead of a tunnel boring machine (TBM) plays a vital role in the efficient operation of the machine, as the cutterhead structure remains unchanged during the tunneling project. This paper aims to elucidate the fundamental principles in the design of the cutterhead opening in soft ground based on data obtained from TBM manufacturers. Initially, a comprehensive database of soft ground cutterheads from different TBM manufacturers across various projects and ground conditions was compiled. The most frequently used cutterhead configurations with diameters exceeding 5 meters were categorized into 36 distinct opening configurations based on a radial opening ratio curve and opening patterns per sector. Next, the performance parameters and particle flow characteristics of three Herrenknecht cutterhead designs featuring varying opening configurations in the central and circumference areas were analyzed using the Discrete Element Method (DEM) by considering material parameters for machine and soil and contact parameters between soil particles and soil particles-machine structures. Hertz–Mindlin model was assigned as the contact model for these elements. Additionally, three different cutterheads employed in Tehran metro projects in Iran were identified by monitoring the cutterhead torque and thrust force under same geotechnical conditions and operational parameters. Generally, a higher opening percentage in the central area of the cutterhead indicates good performance during excavation in cohesive soils. However, the higher opening percentage in circumferential areas is a better choice for effective excavated material removal around the cutterhead and tunnel in non-cohesive soils, weathered rocks, mixed and heterogeneous conditions.
M. Taghvaeenejad; M.R. Shayestefar; P. Moarefvand
Abstract
At different stages of mining, we always face a degree of uncertainty. Some of these uncertainties, such as the amount of reserve and grade of the deposit, are due to the inherent changes in the deposit and directly affect the technical and economic indicators of the deposit. On the other hand, the heavy ...
Read More
At different stages of mining, we always face a degree of uncertainty. Some of these uncertainties, such as the amount of reserve and grade of the deposit, are due to the inherent changes in the deposit and directly affect the technical and economic indicators of the deposit. On the other hand, the heavy costs of the exploration sector often limit the amount of exploratory information, which necessitates the use of accurate estimation methods. In this work,we examines the modeling and estimation results using the conventional and simple kriging methods and the effects of the diverse indicators used in the classification of mineral storages or the parameters defining these indices. 127 exploratory boreholes with an average depth of 95 m are used to build the block model of the deposit in the Data Mine software. After the statistical studies, the 3D variographic studies are performed in order to identify the anisotropy of the region. A grade block model is constructed using the optimal variogram parameters.Then, using various methods to estimate the block model uncertainty including the kriging estimation variance, block error estimation, kriging efficiency and slope of regression, the mineral reserves are classified according to the JORC standard code. Based on different cut-off grades, the tonnage and average grade are calculated and plotted. In this work, an innovative quantitative method based on the grade-number and grade-volume fractal model is used to indicate the classification of mineral reserves. The use of fractal patterns due to the amplitude of the variation is greater and more important than the standard and provides us with a better understanding of the deposit changes per block. The existence of a minimal difference between the use of the standard and fractal patterns in the slope of the regression method indicates less error and is a proof of more reliable results.
Rock Mechanics
M. Hazrati Aghchai; P. Moarefvand; H. Salari Rad
Abstract
Displacements around a tunnel, occurring as a result of excavation, consist of the elastic and plastic parts. In this paper, we discuss the elastic part of displacements as a result of excavation, called net displacement. In general, the previous analytical solutions presented for determining the displacements ...
Read More
Displacements around a tunnel, occurring as a result of excavation, consist of the elastic and plastic parts. In this paper, we discuss the elastic part of displacements as a result of excavation, called net displacement. In general, the previous analytical solutions presented for determining the displacements around a circular tunnel in an elastic medium do not give the net displacements directly. The well-known Kirsch solution is the most widely used method for determining the induced stresses and net displacements around a circular opening in a biaxially-loaded plate of homogeneous, isotropic, continuous, linearly elastic material. However, the complete solution for obtaining the net displacements has not been presented or highlighted in the available literature. Using the linear elasticity, this paper reviews and presents three different analytical methods for determining the net displacements directly as well as induced stresses around a circular tunnel. The three solution methods are the Lame' method, airy stress function method, and complex variable method. The tunnel is assumed to be situated in an elastic, continuum, and isotropic medium in the plane strain condition. The solutions are presented for both the hydrostatic and non-hydrostatic in situ stresses in the 2D biaxial loading condition along with an internal pressure. Loading and unloading in tunneling occurring as a result of excavation and stress differences between the induced and initial ones are considered to evaluate the net displacements directly. Finally, some examples are given to demonstrate the complete solution and show the difference between the net elastic displacements as a result of excavation and total elastic displacements that are not real.
Exploitation
F. Soltani; P. Moarefvand; F. Alinia; P. Afzal
Abstract
The traditional approaches of modeling and estimation of highly skewed deposits have led to incorrect evaluations, creating challenges and risks in resource management. The low concentration of the rare earth element (REE) deposits, on one hand, and their strategic importance, on the other, enhances ...
Read More
The traditional approaches of modeling and estimation of highly skewed deposits have led to incorrect evaluations, creating challenges and risks in resource management. The low concentration of the rare earth element (REE) deposits, on one hand, and their strategic importance, on the other, enhances the necessity of multivariate modeling of these deposits. The wide variations of the grades and their relation with different rock units increase the complexities of the modeling of REEs. In this work, the Gazestan Magnetite-Apatite deposit was investigated and modeled using the statistical and geostatistical methods. Light and heavy REEs in apatite minerals are concentrated in the form of fine monazite inclusions. Using 908 assayed samples, 64 elements including light and heavy REEs from drill cores were analyzed. By performing the necessary pre-processing and stepwise factor analysis, and taking into account the threshold of 0.6 in six stages, a mineralization factor including phosphorus with the highest correlation was obtained. Then using a concentration-number fractal analysis on the mineralization factor, REEs were investigated in various rock units such as magnetite-apatite units. Next, using the sequential Gaussian simulation, the distribution of light, heavy, and total REEs and the mineralization factor in various realizations were obtained. Finally, based on the realizations, the analysis of uncertainty in the deposit was performed. All multivariate studies confirm the spatial structure analysis, simulation and analysis of rock units, and relationship of phosphorus with mineralization.
H. Azmi; P. Moarefvand; A. Maghsoudi
Abstract
Delineation of oxide and sulfide zones in mineral deposits, especially in gold deposits, is one of the most essential steps in an exploration project that has been traditionally carried out using the drilling results. Since in most mineral exploration projects there is a limited drilling dataset, application ...
Read More
Delineation of oxide and sulfide zones in mineral deposits, especially in gold deposits, is one of the most essential steps in an exploration project that has been traditionally carried out using the drilling results. Since in most mineral exploration projects there is a limited drilling dataset, application of geophysical data can reduce the error in delineation of the sulfide and oxide zones. For this purpose, we produced a 3D model of Induced Polarization (IP) data using the ordinary kriging technique. Then the modelling results were compared with the drilling data. The results obtained showed that the 3D geophysical models would properly delineate the sulfide and oxides zones. This work presents a new application of the IP results for separation of these zones. In addition, the conducted variography in this work suggests reducing the profile spacing of dipole-dipole IP arrays down to 25 m. This would properly enrich the integration of geophysical and geological results in the modelling of gold deposits.
M. Dehvedar; P. Moarefvand; A.R. Kiyani; A. R. Mansouri
Abstract
Inadequate hole cleaning can lead to many problems in horizontal and directional wells. In this work, we tried to investigate the cutting transport phenomenon by an experimental directional drilling simulator, considering the differences between the operational and experimental conditions. The inclination, ...
Read More
Inadequate hole cleaning can lead to many problems in horizontal and directional wells. In this work, we tried to investigate the cutting transport phenomenon by an experimental directional drilling simulator, considering the differences between the operational and experimental conditions. The inclination, fluid type (water, foam, viscous, and dense), rotary speed (0 and 110 rpm), nozzle bit size (4, 6, and 8 mm), and stabilizer location (8 and 95 cm from the bit) were included in the tests as the main parameters. It could be concluded that the nozzle size and the stabilizer position influenced the hole cleaning time. In vertical wells, by decreasing the nozzle size from 8 mm to 4 mm, the hole cleaning time was increased. The presence of stabilizer reduced the cleaning time, and optimizing the stabilizer position reduced the probability of cutting bed formation in all inclinations. Finally, a third polynomial equation was fitted between the dimensionless mass and the dimensionless cleaning time.
A. Rezaei; H. Hassani; P. Moarefvand; A. Golmohammadi
Abstract
Ground Penetrating Radar (GPR) is an effective and practical geophysical imaging tool, with a wide set of applications in geological mapping of subsurface information. This research study aims at determination of the geophysical parameter differences in the subsurface geological structures and construction ...
Read More
Ground Penetrating Radar (GPR) is an effective and practical geophysical imaging tool, with a wide set of applications in geological mapping of subsurface information. This research study aims at determination of the geophysical parameter differences in the subsurface geological structures and construction of a 3D fracture model. GPR and resistivity methods were applied to detect the unstable tectonic zones in the C-North deposit. Structural geology investigations were, first, surveyed to detect the faults and fractures in the study area. Based on the structural features, the survey was conducted over an area of 1 km2 with a total of 30 profiles and low-resistivity zones in the C-North deposit which is a great help in reducing their impacts in slope stability studies. GPR sections were, then, obtained from low and high frequency antennas (10 and 50 MHz) to detect fractures and water content zones. The obtained data results demonstrated that the major structural trends in the study area were W–E, NE–SW, and NW–SE while fault zones that can create pathways for groundwater inflow into the deposit in the future. Information obtained from geological and GPR studies were also integrated with drill hole data. The geological information from structures are in good agreement with the actual geological situation. Method and results of this study could be useful in solving problems related to subsurface structures in mining engineering.
H. Haeri; A. R Khaloo; K. Shahriar; M. Fatehi Marji; P. Moaref vand
Abstract
In this work, the mechanism for fracture of brittle substances such as rocks under a uniform normal tension is considered. The oriented straight micro-cracks are mostly created in all the polycrystalline materials resulting from the stress concentrations. The present work focuses on the interactions ...
Read More
In this work, the mechanism for fracture of brittle substances such as rocks under a uniform normal tension is considered. The oriented straight micro-cracks are mostly created in all the polycrystalline materials resulting from the stress concentrations. The present work focuses on the interactions of the pre-existing micro-cracks, which can grow and propagate within a rock-like specimen. The micro-crack initiation and propagation in rock-like specimens is investigated using the Fortran Code TDDCRACK2D, which is a 2D displacement discontinuity method (DDM) for crack analysis, a boundary element computer code based on the linear elastic fracture mechanics (LEFM) theory. In the present work, a higher order DDM is used to implement special crack tip elements for estimation of the stress intensity factors (SIFs) and crack initiation angles for the wing-crack problems initiated at different angles from the original micro-crack tips in an infinite specimen under a uniform tension.