Rock Mechanics
Naeem Abbas; Li Kegang
Abstract
The study examined the influence of cohesion, friction angle, and tunnel diameter on stability within engineering and geotechnical frameworks, while considering the consequences of nearby excavations on the overall stability assessment. The results show that a higher angle of internal friction leads ...
Read More
The study examined the influence of cohesion, friction angle, and tunnel diameter on stability within engineering and geotechnical frameworks, while considering the consequences of nearby excavations on the overall stability assessment. The results show that a higher angle of internal friction leads to a decrease in soil stability number and weighting coefficient. Tunnel diameter significantly affects face support pressure, with larger diameters requiring stronger support due to increased stress. Higher friction angles help stabilize tunnel faces and mitigate diameter-related pressure effects. Stress redistribution around the tunnel is significant within 2 meters from the center, transitioning to elastic behavior elsewhere. A safety factor of 1.3 ensures tensile failure prevention in single and twin tunnels. Balanced stress distribution between tunnels with a slight difference is observed under isotropic in-situ stress. Numerical modeling enhances stress estimations and reveals changes during tunnel excavation, weakening the rock mass. Ground reaction curve analysis with support measures shows reduced tunnel convergence after implementation, suggesting support strategies like extended bolts using updated rock mass rating. The study improves tunnel design and stability assessment by comprehensively understanding stress redistribution and support strategies.
Exploration
Irshad Khan; Afayou Afayou; Naeem Abbas; Asghar Khan; Numan Alam; Kausar Sultan Shah
Abstract
The study utilizes the Limit Equilibrium Method (LEM) to investigate slope movements. These movements were initially generated by construction activities at the slope's base, and subsequent events were driven by seismic activities, as the study studied area lies within the Main Karakoram Thrust (MKT) ...
Read More
The study utilizes the Limit Equilibrium Method (LEM) to investigate slope movements. These movements were initially generated by construction activities at the slope's base, and subsequent events were driven by seismic activities, as the study studied area lies within the Main Karakoram Thrust (MKT) and Main Mantle Thrust (MMT) zones. Soil samples, characterized by a moisture content of 13% and a dry unit weight of 18.14 kN/m³ were analyzed. The study revealed that an increase in saturation caused by rainwater infiltration, resulted in a reduction in unconfined compression strength, decreasing from 712 kPa to 349 kPa. The shear strength and deformation parameters (cohesion, angle of internal friction, and deformation modulus) were also examined with varied degrees of saturation. The results revealed a decrease in these parameters as the percentage of saturation increased from 30% to 90%. The slope stability study revealed that the Factor of Safety (FOS) reduced from 1.85 to 0.86 as the saturation of the material raised from 30% to 90%. To assess the influence of unit weight, cohesion, and angle of internal friction on the FOS, multiple cases were considered. The analysis revealed that the FOS increased with higher cohesion and angle of internal friction, while an increase in unit weight resulted in a lower factor of safety. Furthermore, stability of the slope was evaluated by modifying the slope geometry such as lowering the height. According to the GeoStudio investigation, the slope remained steady even at saturation levels exceeding 80%.
kausar Sultan shah; Naeem Abbas; Li Kegang; Mohd Hazizan bin Mohd Hashim; Hafeez Ur Rehman; Khan Gul Jadoon
Abstract
The rocks in the studied area are prone to deterioration and failure due to frequent exposure to extreme temperature variations and loading conditions. In the context of rock engineering reliability assessment, understanding the energy conversion process in rocks is critical. Therefore, this research ...
Read More
The rocks in the studied area are prone to deterioration and failure due to frequent exposure to extreme temperature variations and loading conditions. In the context of rock engineering reliability assessment, understanding the energy conversion process in rocks is critical. Therefore, this research work aims to assess the energy characteristics and failure modes of pink and white-black granite subjected to uniaxial compression loading at various temperatures. Samples of pink and white-black granite are heated to a range of temperatures (0 °C, 200 °C, 400 °C, 600 °C, 900 °C, and 1100 °C), and their failure modes and energy characteristics including total energy, elastic energy, and dissipated energy are studied by testing preheated samples under uniaxial compression. The results show that the dissipation energy coefficient initially rises rapidly, and then falls back to its minimum value at the failure stage. The micro-structures of granite rock directly affect its elastic and dissipation energy. Axial splitting failure mode is observed in most of the damaged granite specimens. After heating granite to 600 °C, the effect of temperature on the failure mode becomes apparent.