Amir Rezaei; Vahab Sarfarazi; Nima Babanouri; Mohammad Omidi manesh; Shirin Jahanmiri
Abstract
Non-persistent joints are geologic occurrences in rocks that weaken pillars because they are present within them. Using practical tests and numerical models, it has been determined how edge notches affect the way pillars break. Gypsum samples that are notched and have dimensions of 70 mm by 70 mm by ...
Read More
Non-persistent joints are geologic occurrences in rocks that weaken pillars because they are present within them. Using practical tests and numerical models, it has been determined how edge notches affect the way pillars break. Gypsum samples that are notched and have dimensions of 70 mm by 70 mm by 50 mm are created. Gypsum's Young modulus, Poisson ratio, compressive strength, and tensile strength are 5.5 GPa, 0.27, 8 MPa, and 1.1 MPa, respectively. 10-, 20-, and 30-degree notch angles are used. The model receives an axial stress at a rate of 0.05 mm/min. On a rock pillar, numerical simulation is carried out concurrently with an experimental test. The findings indicate that the joint angle is mostly responsible for the failure process. The fracture pattern and failure mechanism of the pillars are connected to the compressive strengths of the specimens. At the notch points, two significant splitting tensile fractures spread vertically until coalescing with the top and lower boundaries of the models. On the left and right sides of the pillar, two rock columns are also taken out. The overall number of cracks rises as sample loading increases. The model's deformation at the start of loading reflect a linear elastic behavior, and the number of fractures steadily grows. When the number of cracks increases, the curve becomes non-linear, and the force being applied peaks. When the sample can no longer tolerate the applied force, a dramatic stress decrease occurs. The macro-failure over the whole model is what leads to the greater stress decrease following the peak load. In actuality, the reduced stress reduction is accompanied by more overall fractures. Similar findings are shown in both the experimental testing and numerical modeling.
Mohammad Omidi manesh; Vahab Sarfarazi; Nima Babanouri; Amir Rezaei
Abstract
This work presents the hollow center cracked disc (HCCD) test and the cracked straight through Brazilian disc (CSTBD) test of oil well cement sheath using the experimental test and Particle Flow Code in two-dimensions (PFC2D) in order to determine mode I fracture toughness of cement sheath. The tensile ...
Read More
This work presents the hollow center cracked disc (HCCD) test and the cracked straight through Brazilian disc (CSTBD) test of oil well cement sheath using the experimental test and Particle Flow Code in two-dimensions (PFC2D) in order to determine mode I fracture toughness of cement sheath. The tensile strength of cement sheath is 1.2 MPa. The cement sheath model is calibrated by outputs of the experimental test. Secondly, the numerical HCCD model and CSTBD model with diameter of 100 mm are prepared. The notch lengths are 10 mm, 20 mm, 30 mm, and 40 mm. The tests are performed by the loading rate of 0.018 mm/s. When the notch length in CSTBD is 40 mm, the external work is decreased 48%, related to the maximum external work of model with notch length of 10 mm (0.225 KN*mm decreased to 0.116 KN*mm). When the notch length in HCCD is 30 mm, the external work is decreased 33%, related to the maximum external work of model with notch length of 10 mm (0.06 KN*mm decreased to 0.04 KN*mm). The fracture energy is largely related to the joint length. The fracture energy is decreased by increasing the notch length. In constant to the notch length, the fracture energy of the CSTBD model is more than the HCCD model. Mode I fracture toughness is constant by increasing the notch length. The HCCD test and the CSTBD test yield a similar fracture toughness due to a similar tensile stress distribution on failure surface. The experimental outputs are in accordance to the numerical results.
Mohammad Omidi manesh; Vahab Sarfarazi; Nima Babanouri; Amir Rezaei
Abstract
This work presents the Semi-Circular Bend (SCB) test and Notched Brazilian Disc (NBD) test of shotcrete using experimental test and Particle Flow Code in two-dimensions (PFC2D) in order to determine a relation between mode I fracture toughness and the tensile strength of shotcrete. Firstly, the micro-parameters ...
Read More
This work presents the Semi-Circular Bend (SCB) test and Notched Brazilian Disc (NBD) test of shotcrete using experimental test and Particle Flow Code in two-dimensions (PFC2D) in order to determine a relation between mode I fracture toughness and the tensile strength of shotcrete. Firstly, the micro-parameters of flat joint model are calibrated using the results of shotcrete experimental test (uniaxial compressive strength and splitting tensile test). Secondly, numerical models with edge notch (SCB model) and internal notch (NBD model) with diameter of 150 mm are prepared. Notch lengths are 20 mm, 30 mm, and 40 mm. The tests are performed by the loading rate of 0.016 mm/s. Tensile strength of shotcrete is 3.25 MPa. The results obtained show that by using the flat joint model, it is possible to determine the crack growth path and crack initiation stress similar to the experimental one. Mode I fracture toughness is constant by increasing the notch length. Mode I fracture toughness and tensile strength of shotcrete can be related to each other by the equation, σt = 6.78 KIC. The SCB test yields the lowest fracture toughness due to pure tensile stress distribution on failure surface.