Mineral Processing
Dorna Pirouzan; Reza Parvareh; Ziaeddin Pourkarimi; Mehdi Rahimi; Javad Moosavi; Hossein Habibi
Abstract
In our country, a massive volume of slag is generated annually from steel production facilities, amounting to about 20 percent of the total steel produced. This slag is an important and valuable source for extracting vanadium, with 67 percent of the world's vanadium production sourced from slag. Iran ...
Read More
In our country, a massive volume of slag is generated annually from steel production facilities, amounting to about 20 percent of the total steel produced. This slag is an important and valuable source for extracting vanadium, with 67 percent of the world's vanadium production sourced from slag. Iran ranks among the top five countries that possess this vital metal; however, vanadium extraction from slag has not been carried out to date. Moreover, due to the unstable quality of the slag, its utilization in other industries has not been feasible. To prevent the environmentally harmful effects of accumulating slag and the inability to utilize it in various industries, it is essential to implement an economic solution for recovering the components present in steel-making slag. In the present project, after sampling from the stored slag deposits at Mobarakeh Steel Company, comprehensive laboratory and pilot-scale studies were conducted on the representative samples. Through processes involving roasting with sodium carbonate, acid leaching with 2 M sulfuric acid, iron cementation, solvent extraction using DEHPA, stripping, and scrubbing, we successfully extracted pentoxide vanadium with high purity suitable for producing ferrovanadium.
Mineral Processing
Mohammadreza Shahbazi; Hadi Abdollahi; Sied Ziaeddin Shafaei; Ziaeddin Pourkarimi; Sajjad Jannesar Malakooti; Ehsan Ebrahimi
Abstract
Tabas coal possesses favorable plastometric properties that make it suitable for use in metallurgical industries as coking coal. However, its high sulfur content, which stands at approximately 2%, poses a significant environmental pollution risk. Additionally, reducing ash content to below 10% is a critical ...
Read More
Tabas coal possesses favorable plastometric properties that make it suitable for use in metallurgical industries as coking coal. However, its high sulfur content, which stands at approximately 2%, poses a significant environmental pollution risk. Additionally, reducing ash content to below 10% is a critical objective of this study to prevent a decline in coal's thermal efficiency in the metallurgical industries. This research work investigates the removal of sulfur and ash from Tabas coal samples using the biological methods including bioflotation and bioleaching. Initially, a combination of mesophilic bacteria including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptosprillium ferrooxidans were employed in the bioflotation method to detain pyrite sulfur in the Tabas coal samples. The highest reduction percentages of pyrite sulfur and ash were equal to 62% and 54.18%, respectively. In the next stage, bioleaching experiments were conducted, the effect of the test time, percentage of bacteria by volume, percentage of coal solids, and absence of bacteria on the amount of sulfur and ash removal was investigated. The test time emerged as the most critical factor. The best sulfur removal was achieved using bioleaching, with a maximum removal of 72.43%, observed for the PE coal sample. Bioflotation also achieved significant sulfur removal, with a maximum removal of 61% observed for the same sample. On the other hand, the best ash removal was achieved using bioflotation, with a maximum removal of 68.98% observed for the PE coal sample, and a maximum removal of 69.34% observed for the B4B2 coal sample using bioleaching. Finally, this research work conducted a comparison of biological methods to determine the amount of sulfur and ash reduction achieved. The results showed that both bioleaching and bioflotation were effective for coal desulfurization and ash removal, with bioleaching performing slightly better for sulfur removal and bioflotation performing slightly better for ash removal.
Sajjad Jannesar Malakooti; Hadi Abdollahi; Ziaeddin Pourkarimi; Behrouz Karimi Shahraki; Mehdi Rahimi; Mohammadreza Shahbazi; Ahmad Rahmanian kooshkaki
Abstract
Parvadeh IV and East Parvadeh mines are two main coal-producing zones within the Tabas coalfield, east of Iran. Since studies have shown that C1 and B2 are the most important working seams in the Parvadeh IV and east Parvadeh areas, this research work focuses on these two coal seams. Syngenetic pyrite ...
Read More
Parvadeh IV and East Parvadeh mines are two main coal-producing zones within the Tabas coalfield, east of Iran. Since studies have shown that C1 and B2 are the most important working seams in the Parvadeh IV and east Parvadeh areas, this research work focuses on these two coal seams. Syngenetic pyrite is available as framboids related to macerals. Decreasing the sulfur content is especially hard when the pyrite particles are fine-grained, finely disseminated, and intergrown with the coal maceral structure. The sulfur content measured in C1 and B2 seams varies from 0.98% to 5.57% and from 0.73% to 5.25%, respectively, with an average of 2.39% and 2.5%. We use a method to predict how coal desulfurized the C1and B2seams of Parvadeh IV and C1 seams of east Parvadeh mines in the Tabas coalfield. The results have given new proofs for the presence of pyrite and clay minerals within the coalfield zone, and to identify a method to predict coal desulfurization with conventional processing and cost-effective methods. The coal preparation strategy in MEMRADCO, Parvadeh, and Ehyasepahan coal-cleaning plants not as it expels mineral matter and pyrite but too reduces the content of most inorganic components.