Rock Mechanics
Manendra Singh; Moqin Mushtaq Zargar; Vivek Kumar Sharma; Ritu Raj Nath
Abstract
Non-structural slope stabilization techniques are gaining popularity for cost-affordability and environmental sustainability and are intended primarily to enhance the soil shear strength parameters. The present study evaluates the performance of three biopolymers: Guar Gum, Gellan Gum, and Xanthan Gum ...
Read More
Non-structural slope stabilization techniques are gaining popularity for cost-affordability and environmental sustainability and are intended primarily to enhance the soil shear strength parameters. The present study evaluates the performance of three biopolymers: Guar Gum, Gellan Gum, and Xanthan Gum as slope stabilizers for a quintessential soil slope of a local district in the foothills of the Lesser Himalayas. The study measures the shear strength of biopolymer-treated soil at varying concentrations and moisture contents, and concludes that the soil shear strength is highly influenced by the concentration of biopolymer and the moisture content. The results demonstrate significant increase (48% and 7%) of the cohesion and friction angle of a particular biopolymer-treated sample for a specific moisture content. However, the addition of biopolymers to the soil also leads to a decrease in the permeability of the original sample. The study, in the next phase, numerically computes the Factor of Safety of the test-bed slope before and after the application of biopolymers, and observes that the addition of biopolymers in soil significantly increases (34%) the factor of safety at an optimum combination concentration and moisture content for all three biopolymers. This signifies their utility as non-structural slope stabilizers. By highlighting the improved shear strength of the biopolymer-treated soils, the study complements the current initiatives for non-structural slope stabilization and sustainable soil enhancement and adds to the new yet expanding body of information regarding long-term, non-structural slope stabilizing techniques.
Mineral Processing
Rahul Shakya; Manendra Singh
Abstract
Due to the critical nature of seismic risk in metro tunnels, the seismic response of underground tunnels is a highly delicate topic. The seismic response of a sub-surface structure depends more on the properties of the surrounding ground and the induced earth deformation during an earthquake than on ...
Read More
Due to the critical nature of seismic risk in metro tunnels, the seismic response of underground tunnels is a highly delicate topic. The seismic response of a sub-surface structure depends more on the properties of the surrounding ground and the induced earth deformation during an earthquake than on the structure's inertial properties. This paper examines the seismic response of a typical section of the underground tunnel of Delhi Metro Rail Corporation (DMRC) between Rajiv Square and Patel Square in New Delhi's Connaught Place. Three-dimensional elasto-plastic analysis of Delhi metro underground tunnels under the seismic loading has been performed by finite element method using the Plaxis 3D software. Additionally, the influence of various boundary conditions on the dynamic response of metro tunnels has been examined. A comparison of the three-dimensional analysis with the two-dimensional plane-strain analysis has also been made. Horizontal displacements were experienced maximum compared to the longitudinal and vertical displacements in the soil-tunnel system. In dynamic analysis, the absorbent boundary is much more effective in controlling the displacements and the induced acceleration than the elementary boundary or the free-field boundary.
Rock Mechanics
Mounius Bashir; Manendra Singh; Krishna Kotiyal
Abstract
Among all methods for ground improvement, stone columns have become more popular recently, owing to their simple construction and plentiful availability of raw materials. However, in relatively softer soils, ordinary stone columns (OSCs) experience significant bulging owing to the minimal confinement ...
Read More
Among all methods for ground improvement, stone columns have become more popular recently, owing to their simple construction and plentiful availability of raw materials. However, in relatively softer soils, ordinary stone columns (OSCs) experience significant bulging owing to the minimal confinement offered by the surrounding soil. This necessitates the introduction of reinforcements in the stone column, to enhance their strength in such circumstances. The subject of this investigation was the assessment of the behavior of horizontally reinforced stone columns (HRSCs), introduced in layered soil, under the raft foundation. The soil material included was idealised using an isotropic linearly elastic fully plastic model with a Mohr-Coulomb failure criterion. There are a total of six separate factors required by the Mohr-Coulomb criterion. These include cohesion (c), the soil's dry unit weight (γd), the Poisson ratio (μ), the angle of internal friction (φ), the angle of dilatancy (ψ), and the Young's modulus of elasticity (E). At the very beginning, the load-settlement response of unreinforced soil was evaluated followed by a comparative study between square and triangular arrangements of stone columns, at different spacings, under the raft, to arrive at the configuration that encounters minimal settlements and lateral deformations. Furthermore, circular discs of suitable geogrid material were introduced along the length of the stone column. The elastic behaviour of geogrids is governed by two properties: tensile modulus and yield strength. The load-settlement behavior and lateral deformations of the resulting reinforced stone columns, with OSCs were compared. Furthermore, the spacing between the circular discs of geogrids was kept at D/2, D, 2D, and 3D, where D is the diameter of the stone column. According to the findings of an investigation conducted using FEM software, the performance of a granular pile group that is laid out in the shape of a triangle encounters much less lateral deformation and settlement than the square arrangement. The results also show that the performance of HRSCs was way better than those of OSCs, under the same in-situ soil conditions.
Rahul Shakya; Manendra Singh
Abstract
Due to fast urbanization, there is a shortage of above-ground surfaces. Thus to reduce this shortage of above-ground surface, underground tunnels are constructed beneath the structure for transportation purposes. As a result, it is critical to understand how earthquakes affect underground tunnels, so ...
Read More
Due to fast urbanization, there is a shortage of above-ground surfaces. Thus to reduce this shortage of above-ground surface, underground tunnels are constructed beneath the structure for transportation purposes. As a result, it is critical to understand how earthquakes affect underground tunnels, so that people's lives can be saved and service levels can be maintained. Underground constructions cannot be considered entirely immune to the impacts of ground shaking, as evidenced by the Kobe earthquake (1995), the Chi-Chi earthquake (1999), and the Niigata earthquake (2004), when some underground structures were severely damaged. A typical section at Chandani Chowk of DMRC (Delhi Metro Rail Corporation) tunnels, New Delhi, India, has been analyzed by using the finite element method. Response of the soil tunnel system for the Uttarkashi earthquake (1991) has been found out in the form of maximum forces induced in the RC liner of the tunnel, displacement, induced acceleration and stresses. The results have been compared with the available closed-form solutions. Parametric studies by considering different parameters such as effect of contraction (volume loss), influence of boundary conditions and damping, effect of interface condition between soil and tunnel, effect of displacement time history and effect of a nearby building have also been conducted. Forces in RC liners and stress concentration obtained in the present study are well-matched to those obtained by available closed formed solutions. The vertical stress concentration and volume loss depend upon the soil medium's constitutive behavior. The section under consideration was safe against the 1991 Uttarkashi earthquake. It can also be observed that, due to the presence of the building, the axial force and bending moment increased in tunnel’s liner, and the value of all three forces reduced as the position of the building was away from the tunnel. Shear force and bending moment were maximum for full slip condition between soil and tunnel lining however the effect of the interface condition on the displacement was negligible after a certain value of the interface condition.
Rahul Shakya; Manendra Singh; Narendra Kumar Samadhiya
Abstract
An earthquake is a random occurrence that can happen anytime in highly seismic active areas. Therefore, it might happen even when the metro-train is moving. In such a scenario, the vibrations produced by the dynamic loading of a moving metro-train and the dynamic loading due to an earthquake will impact ...
Read More
An earthquake is a random occurrence that can happen anytime in highly seismic active areas. Therefore, it might happen even when the metro-train is moving. In such a scenario, the vibrations produced by the dynamic loading of a moving metro-train and the dynamic loading due to an earthquake will impact the dynamic response of underground metro-tunnels. In this work, an effort is made to comprehend how the Delhi Metro's underground tunnels will respond to the combined dynamic loading from the earthquake and the running train. Therefore, the dynamic response of underground metro-tunnels is primarily influenced by the vibrations generated due to the dynamic loading of a running metro-train and the dynamic loading due to an earthquake. Both these loadings cause vibrations at the ground surface and the tunnel utilities. In this paper, an attempt is made to understand the response of Delhi metro-underground tunnels to the combined dynamic loading due to the earthquake and the train's motion. Two-dimensional and three-dimensional finite element analyses are carried out using the Plaxis software. The research work finds that the overall response at the ground surface increases due to the combined dynamic loading of the train and earthquake compared to the train's or the earthquake's sole dynamic loading. Maximum displacements in the soil-the tunnel system and forces in RC liners are found to be more significant for the combined loading of the earthquake and the train motion than those due to individual loadings.