Exploitation
Marco Antonio Cotrina Teatino; Jairo Jhonatan Marquina Araujo; Eduardo Manuel Noriega Vidal; Jose Nestor Mamani Quispe; Johnny Henrry Ccatamayo Barrios; Joe Alexis Gonzalez Vasquez; Solio Marino Arango Retamozo
Abstract
The primary objective of this research was to apply machine learning techniques to predict the production of an open pit mine in Peru. Four advanced techniques were employed: Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (RB). The methodology ...
Read More
The primary objective of this research was to apply machine learning techniques to predict the production of an open pit mine in Peru. Four advanced techniques were employed: Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (RB). The methodology included the collection of 90 datasets over a three-month period, encompassing variables such as operational delays, operating hours, equipment utilization, the number of dump trucks used, and daily production. The data were allocated 70% for training and 30% for testing. The models were evaluated using metrics such as Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Variance Accounted For (VAF), and the Coefficient of Determination (R2). The results indicated that the Bayesian Regression model was the most effective in predicting production in the open pit mine. The RMSE, MAPE, VAF, and R2 for the models were 3686.60, 3581.82, 4576.61, and 3352.87; 12.65, 11.09, 15.31, and 11.90; 36.82, 40.72, 1.85, and 47.32; 0.37, 0.41, 0.41, and 0.47 for RF, XGBoost, KNN, and RB, respectively. This research highlights the efficacy of machine learning techniques in predicting mine production and recommends adjusting each model's parameters to further enhance outcomes, significantly contributing to strategic and operational management in the mining industry.
Exploration
Jairo Jhonatan Marquina Araujo; Marco Antonio Cotrina Teatino; José Nestor Mamani Quispe; Eduardo Manuel Noriega Vidal; Juan Antonio Vega Gonzalez; Juan Vega-Gonzalez; Juan Cruz-Galvez
Abstract
The objective of this research work to employ machine learning techniques including Multilayer Perceptron Artificial Neural Networks (ANN-MLP), Random Forests (RFs), Extreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR) to predict copper ore grades in a copper deposit located in Peru. ...
Read More
The objective of this research work to employ machine learning techniques including Multilayer Perceptron Artificial Neural Networks (ANN-MLP), Random Forests (RFs), Extreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR) to predict copper ore grades in a copper deposit located in Peru. The models were developed using 5654 composites containing available geological information (rock type), as well as the locations of the samples (east, north, and altitude) and secondary ore grade (Mo) obtained from drilling wells. The data was divided into 10% (565 composites) for testing, 10% (565 composites) for validation, and 80% (4523 composites) for training. The evaluation metrics included SSE (Sum of Squared Errors), RMSE (Root Mean Squared Error), NMSE (Normalized Mean Squared Error), and R² (Coefficient of Determination). The XGBoost model could predict the ore grade with an SSE of 15.67, RMSE = 0.17, NMSE = 0.34, and R² = 0.66, the RFs model with an SSE of 16.40, RMSE = 0.17, NMSE = 0.36, and R² = 0.65, the SVR model with an SSE of 19.94, RMSE = 0.19, NMSE = 0.43, and R² = 0.57, and the ANN-MLP model with an SSE = 21.00, RMSE = 0.19, NMSE = 0.46, and R² = 0.55. In conclusion, the XGBoost model was the most effective in predicting copper ore grades.