Sajjad Aghababaei; Hossein Jalalifar; Ali Hosseini; Farhad Chinaei; Mehdi Najafi
Abstract
In this work, two rock engineering system (RES)-based models are presented, the first model to predict the roof failure when a longwall face advances toward a pre-driven recovery room (PDRR) and the second model to select the type of recovery room method for longwall mining. For the first model, an international ...
Read More
In this work, two rock engineering system (RES)-based models are presented, the first model to predict the roof failure when a longwall face advances toward a pre-driven recovery room (PDRR) and the second model to select the type of recovery room method for longwall mining. For the first model, an international database of 43 case histories from the pre-driven rooms including technical parameters and type of corresponding operation outcome of each case history is considered. In this regard, a vulnerability index (VI) that refers to the risk of roof failure is calculated for each case history and the VIs are compared with the type of the corresponding outcomes. The obtained results indicate that the calculated VIs have a good adaptation with the corresponding outcomes. This approach could be used to analyze the risk of failure in PDRR, and determine the critical VI that specifies the boundary between the hazard range and the safe range that leads to an accurate operational planning. In the following, a method called multi-options RES-based model (MORESM) is adopted for the selection of recovery room methods in longwall operation. By this model, selecting the optimum option from several options in terms of many effective parameters on the system is possible. Based on the evaluations, CRR, PDRR3, and PDRR2&3 are the suitable options for the case study. This model could introduce the suitable option based on geotechnical conditions but the final decision depends on the economic policy of the managing team.
M.R. Shahbazi; M. Najafi; M. Fatehi Marji; A. Abdollahipour
Abstract
The in-situ coal is converted to the synthetic gas in the process of underground coal gasification (UCG). In order to increase the rate of in-situ coal combustion in the UCG process, the contact surfaces between the steam, heat, and coal fractures should be raised. Therefore, the number of secondary ...
Read More
The in-situ coal is converted to the synthetic gas in the process of underground coal gasification (UCG). In order to increase the rate of in-situ coal combustion in the UCG process, the contact surfaces between the steam, heat, and coal fractures should be raised. Therefore, the number of secondary cracks should be increased by raising the heat and existing steam pressure during the process. This paper emphasises on the secondary crack growth mechanism of the pre-existing cracks in the coal samples under different loading conditions. Different geometric specifications such as the length of the pre-existing cracks (coal cleats) and their inclinations are considered. The numerical modeling results elucidate that the first crack growths are the wing cracks (also called the primary or tensile cracks) formed due to unbonding the tensile bonds between the particles in the assembly. Ultimately, these cracks may lead to the cleat coalescences. On the other hand, the secondary or shear cracks in the form of co-planar and oblique cracks may also be produced during the process of crack growth in the assembly. These cracks are formed due to the shear forces induced between the particles as the initial cleat length is increased and exceed the dimension of coal blocks. The cavity growth rate increases as the secondary cracks grow faster in the coal blocks. In order to achieve the optimum conditions, it is also observed that the best inclination angle of the initial coal cleat changes between 30 to 45 degrees with respect to the horizon for the coal samples with the elasto-brittle behavior.
Exploitation
A. Hosseini; M. Najafi; Seyed A. Shojaatlhosseini; R. Rafiee
Abstract
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting ...
Read More
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting the selection of an extraction equipment in mechanized longwall mining in steeply inclined coal seams. The important criteria involved are the geometric properties of coal seam (dip, thickness, and uniformity of coal seam), geological and hydraulic conditions (faults, fractures, joints, and underground water), and geomechanical properties of coal seam and surrounding rocks. Extraction of inclined coal seams with gradients greater than 40 degree is different from low-inclined seams, and requires a special equipment. Therefore, the influence of the above-mentioned parameters must be considered simultaneously in the selection of extraction equipment for steeply inclined seams. This paper presents an application of the Fuzzy Analytical Hierarchy Process (FAHP) method in order to select a suitable extraction equipment in the Hamkar coal mine. In the proposed FAHP model, fifteen main criteria are considered, as follow: dip of coal seam, thickness of coal seam, seam uniformity, expansion of coal seam, faults, fractures and joints, underground waters, hangingwall strength, footwall strength, coal strength, in-situ stress, equipment salvage, dilution, system flexibility, and operational costs. Among the 6 considered longwall extraction equipment system alternatives, the findings show that the most suitable extraction equipment system is shearer on footwall and a support system using hydraulic props and the transport of coal with the force of gravity.
S. E. Mirsalari; M. Fatehi Marji; J. Gholamnejad; M. Najafi
Abstract
Analysis of the stresses, displacements, and horizontal strains of the ground subsidence due to underground excavation in rocks can be accomplished by means of a hybridized higher order indirect boundary element/finite difference (BE/FD) formulation. A semi-infinite displacement discontinuity field is ...
Read More
Analysis of the stresses, displacements, and horizontal strains of the ground subsidence due to underground excavation in rocks can be accomplished by means of a hybridized higher order indirect boundary element/finite difference (BE/FD) formulation. A semi-infinite displacement discontinuity field is discretized (numerically) using the cubic displacement discontinuity elements (i.e. each higher order element is divided into four sub-elements bearing a cubic variation in the displacement discontinuities). Then the classical finite difference formulation (i.e. the backward, central, and forward finite difference formulations) is hybridized using the boundary element formulation, enabling us to obtain the nodal tangential stresses and horizontal strains along the elements. Several example problems are solved numerically, and the results obtained are then compared with their corresponding results available in the literature. These comparisons show the effectiveness and validness of the proposed method. A classical practical problem is also used to verify the applicability of the hybridized method.
M. Najafi; Seyed M. E. Jalali; F. Sereshki; A. Yarahmadi Bafghi
Abstract
Performing a probabilistic study rather than a determinist one is a relatively easy way to quantify the uncertainty in an engineering design. Due to the complexity and poor accuracy of the statistical moment methods, the Monte Carlo simulation (MCS) method is wildly used in an engineering design. In ...
Read More
Performing a probabilistic study rather than a determinist one is a relatively easy way to quantify the uncertainty in an engineering design. Due to the complexity and poor accuracy of the statistical moment methods, the Monte Carlo simulation (MCS) method is wildly used in an engineering design. In this work, an MCS-based reliability analysis was carried out for the stability of the chain pillars in the Tabas coal mine, located in Iran. For this purpose, the chain pillar strengths were calculated using the Madden formula, the vertical stress on the chain pillars was determined by an empirical method, and a numerical modeling was performed using the FLAC3D software. The results obtained for the probabilistic stability analysis of the chain pillars showed that the failure probability obtained for the designed pillars by applying the MCS method were approximately the same as that obtained by the advanced second moment (ASM) method, and the values obtained varied between 12 and 18 percent.