Exploitation
A. Saffari; M. Ataei; F. Sereshki
Abstract
Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic ...
Read More
Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic loss, and environmental pollution. The aim of this work is to determine the spontaneous combustion of coal potential in the Tabas Parvadeh coal mines in Iran in order to assess the effect of coal intrinsic characteristics on its occurrence. For the purpose of this investigation, the coal samples were collected from Parvadeh I to IV, and the coal intrinsic characteristics of the samples were tested. In order to determine the spontaneous combustion of coal propensity in this case study, the Crossing Point Temperature (CPT) test was used. Then the relation between the coal intrinsic characteristics and the CPT test values was determined. The results obtained showed that the B1 seam in Parvadeh II and C1 seam in Parvadeh III had a high potential of spontaneous combustion of coal potential. These results also show that an increase in the moisture, volatile matter, pyrite, vitrinite, and liptinite contents enhance the spontaneous combustion of coal tendency in these mines. The results obtained have major outcomes for the management of this phenomenon in the Tabas Parvadeh coal mines. Therefore, evaluation of the spontaneous combustion of coal hazards in coal mines should start in the first stage of design and carried on during their whole lifecycle, even after mine closure.
Exploitation
K. Ghanbari; M. Ataei; F. Sereshki; A. Saffari
Abstract
The presence of methane in coal mines is one of the major problems in underground coal mines. Every year, in underground coal mines, a lot of casualties due to outbursts and explosions of methane gas is occurring. Existence of this gas in the mines not only creates a difficult and dangerous situation ...
Read More
The presence of methane in coal mines is one of the major problems in underground coal mines. Every year, in underground coal mines, a lot of casualties due to outbursts and explosions of methane gas is occurring. Existence of this gas in the mines not only creates a difficult and dangerous situation for work but also makes it more expensive. The release of this gas to the air causes a further pollution of the atmosphere and increases the greenhouse gases in the air. Thus Coal Bed Methane (CBM) drainage before, during, and after coal mining is necessary. Accordingly, the CBM drainage can reduce the risks involved in these mines. In the past decade, CBM has offered a significant potential to meet the ever-growing energy demand and can decrease the disastrous events. In this research work, the CBM potential in Eastern Kelariz, Western Razmja, Bornaky, Bozorg, Razzi, and Takht coal mines of Eastern Alborz coal mines company is investigated using the rock engineering systems (RES) based on the intrinsic and geological parameters. Nine main parameters are considered for modeling CBM, and the interactions between these parameters are calculated by a proposed system. Based on the RES method, the parameters that are dominant (depth of cover) or subordinate (gas content) and also the parameters that are interactive are introduced. The proposed approach could be a simple but efficient tool in the evaluation of the parameters affecting CBM, and hence be useful in decision-making. The results obtained show that Razzi coal mine has a good potential to perform CBM drainage.
Exploitation
S. Maleki; F. Sotoudeh; F. Sereshki
Abstract
Ventilation is a vital component of an underground mining operation, used to guarantee a safe atmosphere for workers and survive them from the hazardous and toxic gases. In the recent years, engineers have begun to apply new operation research techniques in order to optimize the ventilation systems to ...
Read More
Ventilation is a vital component of an underground mining operation, used to guarantee a safe atmosphere for workers and survive them from the hazardous and toxic gases. In the recent years, engineers have begun to apply new operation research techniques in order to optimize the ventilation systems to assist in achieving a regulatory compliance, reduce ventilation costs, and improve its efficiency. Airflow regulation optimization in mine ventilation networks is described as a minimization model whose objective function is a minimum number of regulators and energy consumption. In this work, all the previously accomplished works were first reviewed. Then a ventilation system was designed for the Western-Razmja coal mine by a manual method, and an axial fan was proposed. Subsequently, the same ventilation system was simulated using the VENTSIM 3D software. The results obtained by computer simulation showed that there was a reliable relation between the manual method and the simulation approach. In the final step, the GAMS software was used to solve a Mathematical Programming (MP) problem to minimize the overall cost of ventilation by determination of the optimum location for the fan and regulators. The final results of this work illustrated that not only the number of regulators were reduced through solving the MP model but also the total resistance of the Western-Razmja coal mine was reduced by 14% from 1.6 to 1.3. Furthermore, it was observed that the total efficiency of the proposed fan was increased.
Seyyed M. Hoseini; F. Sereshki; M. Ataei
Abstract
By evaluation of the blasting results, a proper blast pattern can be presented. It is, therefore, essential to employ a reliable method to evaluate blastings for the effective control and optimization of the main cycle operations. This paper aims to propose a criterion for evaluating the blasting results ...
Read More
By evaluation of the blasting results, a proper blast pattern can be presented. It is, therefore, essential to employ a reliable method to evaluate blastings for the effective control and optimization of the main cycle operations. This paper aims to propose a criterion for evaluating the blasting results such as the fragmentation, muckpile condition, back-break, and fly rock, and to make a possible comparison between the blast parameters including the blasting pattern, explosives used, hole depths, and volume of the blasted rocks in the lead and zinc mine in Angouran (Iran). Using the global criterion, making the decision matrix dimensionless, and defining the appropriate conditions for the results obtained, a scalar value is devoted for the blasts, whose larger values denote a larger deviation from the proper blasting conditions and express undesirable blasts regarding the blasting results. By taking into consideration the mining operation conditions and weights of the results obtained, the influence of the results obtained on the mining operation index is also investigated using the genetic algorithm. Furthermore, by composing the weighted decision matrix, the blastings are evaluated and classified. Analyzing the results obtained for blastings in the Angouran mine reveals that the proposed method is an effective approach for evaluation of the blasting results and comparison of the blasts.
M. Ataei; F. Sereshki
Abstract
Like most limestone mines, which produce the raw materials required for cement companies, the transportation cost of the raw materials used in the Shahrood Cement Company is high. It has been tried to build the crushing and grinding plant close to the mine as much as possible. On the other hand, blasting ...
Read More
Like most limestone mines, which produce the raw materials required for cement companies, the transportation cost of the raw materials used in the Shahrood Cement Company is high. It has been tried to build the crushing and grinding plant close to the mine as much as possible. On the other hand, blasting has harmful effects, and the impacts of blast-induced damages on the sensitive machinery, equipment, and buildings are considerable. In such mines, among the blasting effects, blast-induced vibrations have a great deal of importance. This research work was conducted to analyze the blasting effects, and to propose a valid and reliable formula to predict the blast-induced vibration impacts in such regions, especially for the Shahrood Cement Company. Up to the present time, different indices have been introduced to quantify the blast vibration effects, among which peak particle velocity (PPV) has been widely considered by a majority of researchers. In order to establish a relationship between PPV and the blast site properties, different formulas have been proposed till now, and their frequently-used versions have been employed in the general form of , where W and D are the maximum charge per delay and the distance from the blast site, respectively, and , , and describe the site specifications. In this work, a series of tests and field measurements were carried out, and the required parameters were collected. Then in order to generalize the relationship between different limestone mines, and also to increase the prediction precision, the related data for similar limestone mines was gathered from the literature. In order to find the best equation fitting the real data, a simple regression model with genetic algorithm was used, and the best PPV predictor was achieved. At last, the results obtained for the best predictor model were compared with the real measured data by means of a correlation analysis.
Omid Saeidi; Ahmad Ramezanzadeh; Farhang Sereshki; Seyed Mohammad Esmaeil Jalali
Abstract
This study aims at presenting a numerical model for predicting grout flow and penetration length into the jointed rock mass using Universal Distinct Element Code (UDEC). The numerical model is validated using practical data and analytical method for grouting process. Input data for the modeling, including ...
Read More
This study aims at presenting a numerical model for predicting grout flow and penetration length into the jointed rock mass using Universal Distinct Element Code (UDEC). The numerical model is validated using practical data and analytical method for grouting process. Input data for the modeling, including geomechanical parameters along with grout properties, were obtained from a case study. The effect of rock mass properties such as joint hydraulic aperture, spacing, trace length, orientation and grout properties as yield stress and water to cement, w/c ratio was considered on grout flow rate and penetration length. To illustrate the effect of aforementioned properties, models were constructed with dimensions of 40×20m. A vertical borehole with diameter of 60mm and 10m depth was drilled in a jointed rock media. The results were in a good agreement with analytical method. It was observed that by increasing joint hydraulic aperture, grouting flow increases using a power law function. The optimum grout penetration observed with joint sets intersection of 40°-60° as experienced in practice. With an increase in joint spacing grout penetration increases around borehole when spacing exceeds two meters it decreases, gradually.