A. Agah; N. Falahati
Abstract
In this research work, the potential capability of nano-clay and tonsil, as low-cost and domestic adsorbents, for the elimination of a cationic dye, (CR18) from contaminated water is investigated. The surface properties of the adsorbents are studied by means of the scanning electron microscopy (SEM) ...
Read More
In this research work, the potential capability of nano-clay and tonsil, as low-cost and domestic adsorbents, for the elimination of a cationic dye, (CR18) from contaminated water is investigated. The surface properties of the adsorbents are studied by means of the scanning electron microscopy (SEM) and X-ray diffraction techniques. The effects of the initial dye concentration, pH, stirring speed, contact time, and adsorbent dosage are investigated at 25 . The results obtained show that the dye adsorption data from the nano-clay and tonsil experiments fit well to the Langmuir and Freundlich isotherms, respectively. The results of dye adsorption kinetics demonstrate that the adsorption system follows a pseudo-second-order model with a satisfactory correlation value (R=99%).The adsorption thermodynamics is also studied, concluding that the adsorption process is spontaneous and physically controlled. Under the optimum conditions (pH of 7, stirring speed of 200 rpm, CR18 concentration of 30 ppm and contact time of 30 min), the adsorption capacities of the mixed adsorbents show the maximum adsorption efficiency at the tonsil:nano-clay weight ratio of 1:2.
K. Seifpanahi Shabani; B. Abedi-Orang
Abstract
In this work, three types of natural clays including kaolinite, montmorillonite, and illite with different molecular structures, as adsorbents, are selected for the removal of methylene blue dye, and their performance is investigated. Also the optimization and the analysis of the dye adsorption mechanism ...
Read More
In this work, three types of natural clays including kaolinite, montmorillonite, and illite with different molecular structures, as adsorbents, are selected for the removal of methylene blue dye, and their performance is investigated. Also the optimization and the analysis of the dye adsorption mechanism are performed using the response surface methodology, molecular modeling, and experimental studies. The response surface optimization results demonstrate that the parameters affecting on the dye adsorption process are somewhat similar in all the three types of clays, and any difference in the impacts of the different parameters involved depends on the different structures of these three types of clays. The results of the experimental studies show that all the three clays follow the Temkin isotherm, and the comparison of the clay adsorption capacity is illite (3.28) > kaolinite (4.15) > montmorillonite (4.5) L/g. On the other hand, the results obtained from the laboratory studies and the response surface optimization were obtained using molecular modeling with the Gaussian and Chem-Office softwares. The results of these achievements confirm that the number of acceptor hydrogen bonds around the clays influence the adsorption capacity of methylene blue. Based on the results obtained, most adsorption capacities of clays are related to illite > kaolinite > montmorillonite that have 24, 18, and 16 acceptor hydrogens, respectively. The assessment of the adsorption mechanism process by the different methods confirms the dominance of the physical adsorption process and a minor effect of the chemical adsorption.
M. Mohammadkhani; M. Abdollahy; M. R. Khalesi
Abstract
Copper oxide minerals such as malachite do not respond well to the traditional copper sulfide collectors, and require alternative flotation schemes. In many copper ore mines, significant copper oxide minerals, especially malachite, are associated with sulfide minerals. Considering that xanthates are ...
Read More
Copper oxide minerals such as malachite do not respond well to the traditional copper sulfide collectors, and require alternative flotation schemes. In many copper ore mines, significant copper oxide minerals, especially malachite, are associated with sulfide minerals. Considering that xanthates are most widely used in the flotation of sulfide minerals as well as copper sulfide minerals and, hydroxamate has shown a good selectivity for copper oxide minerals. Use of the synergistic effect of xanthate and hydroxamate can be an effective way to increase the flotation efficiency of copper oxide minerals along with sulfide minerals. In this work, we investigate the individual interactions of potassium amyl xanthate (PAX) and potassium alkyl hydroxamate (HXM) with the natural malachite and explore their synergistic effects on the malachite flotation. The results of solubility of malachite in collector solutions, changes in the malachite surface potential, adsorption kinetics, adsorption densities, dynamic contact angles, FT-IR analyses, and small-scale flotations, are discussed. The results obtained demonstrate that PAX and HXM are chemically co-adsorbed on the malachite surface, and the amount of PAX adsorbed on the malachite surface is considerably increased in the mixed PAX/HXM systems because of the co-adsorption mechanism. The flotation results confirm that the mixed PAX/HXM exhibit a superior flotation performance of malachite compared to the individual system of PAX or HXM. Based on these results, the mixed PAX/HXM exhibit a remarkable synergism effect on malachite surface hydrophobicity.
F. Sadough Abbasian; B. Rezai; A. R. Azadmehr; H. Hamidian
Abstract
In this work, two clay-based composites are prepared for the adsorptive removal of the chloride ions from aqueous solutions. These composites are characterized through Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray fluorescence spectroscopy, and X-ray diffraction analysis. ...
Read More
In this work, two clay-based composites are prepared for the adsorptive removal of the chloride ions from aqueous solutions. These composites are characterized through Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray fluorescence spectroscopy, and X-ray diffraction analysis. The effects of different parameters such as the contact time, amount of adsorbent, chloride concentration, temperature, and pH are studied by batch experiments. Also the isotherm, kinetic, and thermodynamic of the adsorptive removal of the chloride ions from these two composites are investigated. According to the results obtained, the adsorptive removal of chloride ions is initially rapid, and the equilibrium time is reached after 30 min. The optimal pH value is 7.0 for a better adsorption, and the maximum capacity can be achieved, which is 60.2 mg/g with 1000 mg/L of the initial chloride concentration. The Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich adsorption models are applied to describe the equilibrium isotherms at different chloride concentrations. According to the equilibrium isotherms and the correlation coefficients (R2CDC: 0.9424, R2LDC: 0.996), the process can be described by the Langmuir model, and exhibits the highest removal rate of 97.24% (24.31 mg/g) with 250 mg/L of the initial chloride concentration. The pseudo-first-order and pseudo-second-order, intra-particle diffusion, and mass transfer kinetics models are used to identify the mechanism of the adsorptive removal of the chloride ions. The pseudo-second order model due the correlation coefficients (R2CDC: 0.9217-0.9852, R2LDC: 0.9227-0.9926) can be fitted to the kinetic calculations, and it is applicable for the adsorptive removal of chloride ions by the adsorbents. The thermodynamic calculations show that in a low chloride concentration, the sorption is spontaneous, associative, and endothermic; and in a high concentration, it is unspontaneous, dissociative, and endothermic. The calculated value of free energy (E) for adsorption onto the adsorbents suggests that the reaction rate controls the adsorptive removal of the chloride process rather than diffusion. It can be concluded that these two composites can be used as effective and applicable adsorbents for the adsorptive removal of chloride ions.
F. Mohajer-Moghari; K. Seifpanahi Shabani; M. Karamouzian
Abstract
This researchdescribe wastewater pre-treatment that contaminated with Methylene Blue dye (MB) and Ni(II) ion by Athelia Bombacina fungus dead biomass (ABFDB). Researches finding on ABFDB characterization by SEM, XRD, CHNS and FT-IR analysis show that ABFDB can be used as efficient sorbent, because ABFDB ...
Read More
This researchdescribe wastewater pre-treatment that contaminated with Methylene Blue dye (MB) and Ni(II) ion by Athelia Bombacina fungus dead biomass (ABFDB). Researches finding on ABFDB characterization by SEM, XRD, CHNS and FT-IR analysis show that ABFDB can be used as efficient sorbent, because ABFDB cellular wall consist of Chitin, β-Glucan and Cellulose biopolymers, generally. Results show that removal of MB and Ni(II) ion by ABFDB sorbent is more than 86.41 and 66.2%, respectively. So, after parameters investigation of MB and Ni(II) ion sorption process by ABFDB, the response surface method was employed for optimization and study the interaction of operational parameters on the sorption of pollutants. This low-cost and natural environmental friendly biosorbent can be utilized for pretreatment process in the first step of wastewater treatment project.
R. Dabiri; E. Amiri Shiraz
Abstract
This paper describes a preliminary study of the adsorption of toxic elements from synthetic wastewater in a batch mode. Clay minerals have been highly considered as inexpensive available adsorbents that adapt with the environment due to a special level and a high potential of adsorption. In the present ...
Read More
This paper describes a preliminary study of the adsorption of toxic elements from synthetic wastewater in a batch mode. Clay minerals have been highly considered as inexpensive available adsorbents that adapt with the environment due to a special level and a high potential of adsorption. In the present research work, low-cost natural minerals of speiolite from the Iliato mine (located in NE Iran) and zeolite from the Aftar mine (located in north of Iran) are used to remove nickel(II), antimony(III), and arsenic(V) from synthetic wastewater. The adsorption experiments are conducted by varying the initial concentrations of the elements, pH values, adsorption times, and adsorbent dosage. The experimental isotherm data is analyzed using the Langmuir and Freundlich equations. Concerning a higher Langmuir coefficient R2 in nickel and antimony, the mechanism of adsorption of these elements is mono-layer and homogenous. Based on the Freundlich model, adsorption of arsenic is multi-layer and heterogeneous. The kinetic studies show that the Ni, Sb, and As adsorption mechanism is well-described by a pseudo-second-order kinetic model. The thermodynamic parameters indicate that the adsorption process has an exothermic character and is more feasible with decreasing temperature. Based on the experimental results, it can be concluded that natural sepiolite and zeolite has the potential of application as an efficient adsorbent for the removal of toxic elements from synthetic wastewater.
Mineral Processing
M. R. Heydartaemeh
Abstract
In this research work, the Ni-Zn Ferrite Mineral Nanoparticles (NZFMN), as a novel nanoadsorbent, was used for the removal of the Green Malachite (GM) dye from aqueous solutions by in a batch and fixed bed column. Firstly, the NZFMN adsorption properties were investigated. The effects of the process ...
Read More
In this research work, the Ni-Zn Ferrite Mineral Nanoparticles (NZFMN), as a novel nanoadsorbent, was used for the removal of the Green Malachite (GM) dye from aqueous solutions by in a batch and fixed bed column. Firstly, the NZFMN adsorption properties were investigated. The effects of the process parameters including the contact time, adsorbent dosage, solution pH, and GM initial concentration were also studied. Thence, GM was quantitatively evaluated using the Freundlich and Langmuir isotherms and the pseudo-first- and second-order models. The adsorption data for the adsorption equilibrium was found to be described well using the Freundlich isotherm model. The results obtained for the AFM and SEM analyses showed that the particle size was less than 100 nm. Also the BET analysis showed that the surface area for NZFMN was 120 . The results obtained also showed that the adsorption capacity and removal percentage of GM on NZFMN from wastewater was about 90%. Consequently, NZFMN was found to be a good adsorbent for wastewater purification.
K. Seifpanahi Shabani; A. Vaezian
Abstract
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical ...
Read More
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical aspects of the magnetic Nano- mineral surfaces are studied in contrast to acid mine drainage using the multi- -analytical techniques XRF, XRD, BET, SEM, TEM, FT-IR, and AFM before and after adsorption of toxic elements. According to the results obtained, the FT-IR analysis presents a suitable curve, showing that the adsorption site of the sorption is filled with Ni(II) and Cd(II) ions. The results obtained show that the adsorption reaction is due to the high removal of the toxic elements from acid mine drainages.