Environment
Mehdi Soleymani Gharegol; Kazem Badv; Behzad Nemati akhgar
Abstract
This paper carried out the study on removing cyanide from aqueous solutions by modified zeolite with hexadecyltrimethylammonium bromide. After determining the properties of the prepared adsorbent by the XRD, SEM, FTIR, and BET techniques, the effect of parameters such as the initial concentration of ...
Read More
This paper carried out the study on removing cyanide from aqueous solutions by modified zeolite with hexadecyltrimethylammonium bromide. After determining the properties of the prepared adsorbent by the XRD, SEM, FTIR, and BET techniques, the effect of parameters such as the initial concentration of cyanide, pH, contact time, temperature, and the ionic strength of cyanide was examined by batch tests, and the effects of bed depth and flow rate on the performance of cyanide adsorption was investigated by column process. The XRD analysis showed the presence of clinoptilolite mineral in the structure of the raw zeolite, and the surface coating of raw zeolite by surfactant was detected by the SEM method. The FT-IR results confirmed the adsorption of cationic surfactant on the surface of the modified zeolite. The Langmuir, Freundlich and Tamkin adsorption models showed an excellent ability to describe the cyanide adsorption isotherm using the studied adsorbent. The adsorption capacity of cyanide by modified zeolite was 3.97 mg/g, significantly increased compared to the maximum adsorption capacity of raw zeolite cyanide (0.54 mg/g). The pseudo-second-order model has an excellent ability to describe the adsorption kinetics of cyanide contaminants using natural and modified zeolites. Maximum cyanide uptake capacity was achieved at pH value 8. Cyanide removal decreased with increasing pH and ionic strength of the stock solution and increased with an increase in solution temperature. Column study results confirmed that the adsorption capacity increased with the increasing bed depth, and decreased with increasing flow rate. Yoon-Nelson curves are closer to the experimental curves with high R2 values.
S. Mirshrkari; V. Shojaei; H. Khoshdast
Abstract
A coal waste sample loaded with Fe3O4 nanoparticles is employed as an efficient adsorbent to remove Cd from synthetic wastewater. The synthesized nanocomposite is characterized using the Fourier transform-infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. ...
Read More
A coal waste sample loaded with Fe3O4 nanoparticles is employed as an efficient adsorbent to remove Cd from synthetic wastewater. The synthesized nanocomposite is characterized using the Fourier transform-infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The visual analysis of the microscopic image shows that the mean size of the magnetite nanoparticles is about 10 nm. The effects of the operating variables of the initial solution pH (3-11) and nanocomposite to pollutant ratio (7-233) are evaluated using the response surface methodology on cadmium adsorption. The process is also optimized using the quadratic prediction model based on the central composite design. The statistical analysis reveals that both factors play a significant role in Cd adsorption. The maximum Cd removal of 99.24% is obtained under optimal operating conditions at pH 11 and nanocomposite/cadmium ratio of 90 after 2 h of equilibrium contact time. A study of the adsorption kinetics indicates that the maximum removal could be attained in a short time of about 2 min following a first-order model. The isotherm investigations present that the Cd adsorption on the Fe3O4/coal waste nanocomposite has a linearly descending heat mechanism based on the Temkin isotherm model with the minor applicability parameters than the other isotherm models. The overall removal behaviour is attributed to a two-step mechanism including a rapid adsorption of cadmium ion onto the active sites at the surface of nanocomposite followed by a slow cadmium hydroxide precipitation within the pores over the nanocomposite surface.
M. Hosseini Nasab; M. Noaparast; H. Abdollahi
Abstract
In this research work, the bio-leaching of Co and Ni from an iron-rich laterite ore is assessed using the acidophilic heterotrophic (Delftia acidovorans)and autotrophic (Acidithiobacillus ferrooxidans) bacteria. The metabolic products of the acidophilic bacteria play an important role in bio-leaching. ...
Read More
In this research work, the bio-leaching of Co and Ni from an iron-rich laterite ore is assessed using the acidophilic heterotrophic (Delftia acidovorans)and autotrophic (Acidithiobacillus ferrooxidans) bacteria. The metabolic products of the acidophilic bacteria play an important role in bio-leaching. The results obtained from the indirect bio-leaching indicate the highest nickel recoveries of up to 83.65% and 80.18%, respectively, by the supernatants of Acidithiobacillus ferrooxidans and Delftia acidovorans, both measured at 90 °C for 3 h with a stirring speed of 370 rpm and S/L of 0.1, while the corresponding cobalt recovery rates have reached 86.93% and 83.94%, respectively. The iron dissolution rates in these conditions for the two studied bacteria are 64.34% and 54.41%, respectively. The nickel and cobalt extractions by the indirect bio-leaching of Delftia acidovorans are, respectively, 29.84% and 23.75% higher than those for the direct bio-leaching, performed at 30 °C and 150 rpm of an incubator shaker for 30 days. For the indirect bio-leaching, the chemical control has a larger influence on the dissolution rate of the iron-rich laterite compared to the diffusion control. The activation energies of nickel and cobalt in the chemical control model are 40.07 and 39.08 kJ/mol, respectively.
Mineral Processing
Y. Kianinia; M. R. Khalesi; M. Abdollahy; A. Khodadadi Darban
Abstract
Processing of gold ores with high sulfide minerals is problematic as they consume cyanide and reduce gold leaching. Optimization of gold leaching and cyanide consumption requires a methodology to estimate the amount of exposed cyanicides, their leaching kinetics, and speciation of cyanide complexes that ...
Read More
Processing of gold ores with high sulfide minerals is problematic as they consume cyanide and reduce gold leaching. Optimization of gold leaching and cyanide consumption requires a methodology to estimate the amount of exposed cyanicides, their leaching kinetics, and speciation of cyanide complexes that consume the free cyanide and compete with gold. In this paper, a physico-chemical approach is presented to estimate the liberation and exposure of cyanicides to the leaching solution, and then prediction of the speciation of all possible related species in the solution. The results obtained show that this methodology not only could successfully estimate the gold leaching and cyanide consumption based on the mineralogical data with a lower number of parameters compared to existing empirical models, but also offers the prediction of formation of all the possible complexes that could be used for optimization purposes.