M. Ibrahim; N. Mohammad; Z. Ahmad; Sh. Bacha; N. Muhammad Khan; M. Iftikhar Khan
Abstract
In this work, we focus on the up-gradation of the copper ore of Qilla Saifullah in Pakistan through the froth flotation technique. The chemical analysis of the head copper ore sample reveal the presence of 2.85% Cu, 22% Fe2O3, 52.9% SiO2, and other minor minerals. The optimum grinding time and ...
Read More
In this work, we focus on the up-gradation of the copper ore of Qilla Saifullah in Pakistan through the froth flotation technique. The chemical analysis of the head copper ore sample reveal the presence of 2.85% Cu, 22% Fe2O3, 52.9% SiO2, and other minor minerals. The optimum grinding time and liberation size of the copper ore have been determined as 30 minutes and +149-105 µm, respectively, for further processing. The chemical reagents are optimized in order to get a maximum grade and recovery of the copper ore. After comparisons and analysis of the results obtained, it can be concluded that the maximum grade and recovery of the copper ore are achieved at the dosage 300 (g/t) of the collector potassium amyl xanthate (C6H11KOS2), 250 g/t of pine oil, 250 g/t of a depressant (Na2SiO3), conditioning time of 10 minutes for a collector, flotation time of 6 and 10 minutes, and pH of 10 using the froth flotation technique.
B. Jodeiri Shokri; H. Dehghani; R. Shamsi; F. Doulati Ardejani
Abstract
This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate ...
Read More
This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been suggested by applying the gene expression programming (GEP) algorithms. For this, after gathering an appropriate database, some of the most significant parameters such as the tailing particle depths, initial remaining pyrite and chalcopyrite fractions, and concentrations of bicarbonate, nitrite, nitrate, and chloride are considered as the input data. Then 30% of the data is chosen as the training data randomly, while the validation data is included in 70% of the dataset. Subsequently, the relationships are proposed using GEP. The high values of correlation coefficients (0.92, 0.91, 0.86, and 0.89) as well as the low values of RMS errors (0.140, 0.014, 150.301, and 0.543) for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH prove that these relationships can be successfully validated. The results obtained also reveal that GEP can be applied as a new-fangled method in order to predict the AMD generation process.
M. R. Samadzadeh Yazdi; M. Abdollahi; S. M. Mousavi; A. Khodadadi Darban
Abstract
Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate ...
Read More
Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate by the thermophilic Acidianus brierleyi was studied, and the microbial growth, copper dissolution, iron oxidation, and jarosite precipitation were monitored in different initial pH (pHi) values. Bacterial growth was greatly affected by pHi. While the bacterial growth was delayed for 11 days with a pHi value of 0.8, this delay was reduced to nearly one day for a pHi value of 1.2. Two stages of copper recovery were observed during all the tests. A high pHi value caused a fast bacterial growth in the first stage and severe jarosite precipitation in the later days causing a sharp decline in the bacterial population and copper leaching rate. The copper recoveries after 11 days were 25%, 78%, 84%, 70%, 56%, and 39% for the pHi values of 0.8, 1.0, 1.2, 1.3, 1.5, and 1.7, respectively. Sulfur and jarosite were the main residues of the bioleaching tests. It was revealed that the drastic effect of jarosite precipitation on the microbial growth and copper recovery was mainly caused by the ferric iron depletion from solution rather than passivation of the chalcopyrite surface. A slow precipitation of crystalline jarosite did not cause a passive chalcopyrite surface. The mechanisms of chalcopyrite bioleaching were discussed.
Mineral Processing
R. Ahmadi; E. Ravanasa; Y. Mirzapour
Abstract
In this work, adsorption of the potassium amyl xanthate collector on the pure chalcopyrite surface was studied by applying atomic force microscopy (AFM). The adsorption experiments were carried out at different concentrations of the collector and at diverse pH values in the presence or absence of exterior ...
Read More
In this work, adsorption of the potassium amyl xanthate collector on the pure chalcopyrite surface was studied by applying atomic force microscopy (AFM). The adsorption experiments were carried out at different concentrations of the collector and at diverse pH values in the presence or absence of exterior ions. The changes occurring in the surface morphology of chalcopyrite due to the collector adsorption were evaluated by measuring the contact angle of the collector and its surface coating. According to the 3D images obtained by AFM, an increase in the pH value from 7.5 to 9.5 at two concentrations of 25*10-3 and 50*10-3 g/ton of the collector would increase the number of particles adsorbed on the surface, improve the adsorption morphology, and reduce the contact angle. Moreover, at a constant pH value, increasing the collector would result in the proliferation of contact angles as well as a relative increase in the number of particles. By comparing the morphological surface changes in the tap and distilled water samples, applying tap water, owing to the presence of Cu2+ ions and activation of the surface through the production of CuS, the quality and quantity of adsorption would be increased. The use of tap water not only can account for an appropriate coating by the collector but also causes to reduce the consumption of collector for at least 50%.