Mineral Processing
Fatemeh Kazemi; Ali akbar Abdollahzadeh
Abstract
This research work aims to explore the intricate mineralogy and texture of the tailing piles of iron ore processing plants to present a particle-based prediction for magnetite recovery. Three samples were taken from different points of tailings piles of an iron ore processing plant. Davis tube tests ...
Read More
This research work aims to explore the intricate mineralogy and texture of the tailing piles of iron ore processing plants to present a particle-based prediction for magnetite recovery. Three samples were taken from different points of tailings piles of an iron ore processing plant. Davis tube tests were performed on each sample under various operating conditions. Process mineralogy studies were conducted to determine the mineralogy modal of the feed and product of each test. An Artificial Neural Network (ANN) model was used to make a model that related the grade and recovery of magnetite in the product to the mineralogy modal of the tailing piles. The magnetite grade and association index of feed, the magnetic intensity, and the water flow rate were the inputs to this network. The grade and magnetite recovery correlation coefficients were 0.954 and 0.86, respectively. The grade of magnetite in the feed emerged as a limiting factor on the grade and recovery of magnetite in concentrate. An increase of one unit in magnetite grade in the feed resulted in a 1.68 decrease in the recovery. The association index changes with the coefficients of -0.173 cause the changes in predicted magnetite recovery in the concentrate.
Mineral Processing
Rim Amata; Mohamed Bounouala; Ashraf Alsafasfeh; Amar Amata; Sofiane Bouabdallah
Abstract
The Djebel Onk region of Algeria faces a significant environmental concern, related to phosphate mining waste. Although these mining tailings contain relatively low quantities of valuable minerals, they still include up to 25% P₂O₅ in the particle size range of 0.25-1 mm (-1-+0.25), suggesting the ...
Read More
The Djebel Onk region of Algeria faces a significant environmental concern, related to phosphate mining waste. Although these mining tailings contain relatively low quantities of valuable minerals, they still include up to 25% P₂O₅ in the particle size range of 0.25-1 mm (-1-+0.25), suggesting the potential for recovery and reuse. This research, based on the Bir El Ater area, explores the methods to recover phosphate-rich minerals, optimizing their reuse. Two techniques were explored: calcination, a heat treatment altering mineral chemistry, and electrostatic separation, which uses the electrical properties to separate minerals. The black phosphate tailings collected from the curved grids of wet processing were subjected to detailed analysis using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and X-Ray Fluorescence (XRF), to examine their mineralogical and chemical properties. The results showed a notable improvement in the P₂O₅ concentration, with electrostatic separation reaching a 30.03% content and an 89% recovery rate, while calcination achieved the 30.91% content with a 91% recovery rate. These results highlight the effectiveness of both methods in recovering phosphate from mining tailings, contributing to a better waste management, a more efficient resource use, and a reduced environmental footprint. They also suggest sustainable recovery pathways, especially for the regions facing water scarcity, where flotation is impractical. With the ability to achieve high recovery rates without chemical inputs, calcination and electrostatic separation stand out as environmentally sustainable options for global phosphate beneficiation.
Mineral Processing
Ashraf Alsafasfeh; Anum Razzaq; Abeer Sajid; Maryam Nazir; Muhammad Badar Hayat; Mirza Zaid
Abstract
Palygorskite (PAL), also known as attapulgite, is a clay mineral prized for its nanorod-like silicate structure and fibrous morphology. The traditional PAL purification methods often involve wet gravity separation techniques such as sedimentation and screening, which require significant water usage and ...
Read More
Palygorskite (PAL), also known as attapulgite, is a clay mineral prized for its nanorod-like silicate structure and fibrous morphology. The traditional PAL purification methods often involve wet gravity separation techniques such as sedimentation and screening, which require significant water usage and pose sustainability challenges, especially in the water-scarce regions. This work introduces a novel, environmentally sustainable dry beneficiation method for PAL. A large PAL sample with 41.7% content and 10% moisture was crushed, ground using a pin mill, and classified into three particle size fractions:-0.088 mm + 0.066 mm, -0.066mm +0.044 mm, and -0.044 mm. These fractions were treated with an air classifier. A Box-Behnken experimental design was employed to investigate the effects of particle size, shutter opening, and motor speed on the classification efficiency. The optimal parameters for grade were 400 rpm motor speed, shutter opening of 1 mm, and feed size of -0.066 mm + 0.044 mm. For the recovery, the optimal conditions were 1200 rpm motor speed, shutter opening of 2.5 mm, and feed size of -0.044 mm. The most favorable balance of grade (67.8%) and recovery (53.2%) was achieved with a motor speed of 1200 rpm, shutter opening of 4 mm, and feed size of -0.066 mm + 0.044 mm. The work concludes that air classification significantly enhances the PAL beneficiation process, with a 50% increase in grade, and recommends exploring the low shear grinding techniques for further improvement.
Mineral Processing
Chol Ung Ryom; Kwang Hyok Pak; Il Chol Sin; Kwang Chol So; Un Chol Han
Abstract
Scheelite ore with heavy and magnetic minerals can be generally concentrated using shaking table centered gravity-magnetic processing. When magnetic field is formed by fixing magnetic bars on which permanent magnets are arranged at a constant interval, above the table desk, heavy scheelite particles ...
Read More
Scheelite ore with heavy and magnetic minerals can be generally concentrated using shaking table centered gravity-magnetic processing. When magnetic field is formed by fixing magnetic bars on which permanent magnets are arranged at a constant interval, above the table desk, heavy scheelite particles can be concentrated by gravity, whereas heavy magnetic mineral particles can be floated off like light mineral particles by upward magnetic force. In this paper, concentration of scheelite and removal of pyrrhotite floated by magnetic force was simulated using CFD for the sample containing 1% scheelite and 2% pyrrhotite, and compared with the experiment. As a result, WO3 grade and separation efficiency of concentrate were 65.3% and 80.1%, respectively, in the new table equipped with magnetic bars, whereas 28.4% and 76.5%, respectively, in conventional table. The magnetic field formed by fixing magnetic bars above table could be significant in simplifying the sequential tabling-magnetic separation process and reducing the loss of scheelite.
Mineral Processing
M. Diab; M. Abu El Ghar; I. Mohamed Gaafar; A. H. Mohamed El Shafey; A. Wageh Hussein; M. Mohamed Fawzy
Abstract
In this work we are concerned with the potentiality of using mineral processing for raising the grade of the valuable heavy minerals (VHMs) from the Quaternary stream sediments of Wadi and Delta Sermatai located on the southern coast of the Red Sea, Egypt. A rigorous understanding of the chemical and ...
Read More
In this work we are concerned with the potentiality of using mineral processing for raising the grade of the valuable heavy minerals (VHMs) from the Quaternary stream sediments of Wadi and Delta Sermatai located on the southern coast of the Red Sea, Egypt. A rigorous understanding of the chemical and mineralogical characteristics of the studied samples is a prerequisite for the selection and development of the physical processing used in order to produce a high-grade concentrate. For this purpose, the grain size distribution analysis, heavy liquid separation tests as well as XRF, and SEM analysis are performed. The magnetite, ilmenite, garnet, zircon, rutile, apatite, sphene, pyrolusite, celestine, and heavy green silicates are the valuable heavy minerals recorded in the studied samples; but their quantity varies between Wadi and Delta. The upgrading experiments are performed via a shaking table in conjunction with the low and high-intensity magnetic separator in order to obtain the high-grade concentrates from the valuable heavy minerals, and after applying the optimum separation conditions, the total heavy mineral (THM) assay increase from 8.32% to 46.04% for Wadi Sermatai, while for Delta Sermatai increase from 8.37% to 50.13% into 8.89% and 9.59%, respectively, by mass yield. The THM recovery values reach 66.84% for Wadi Sermatai and 67.23% for Delta Sermatai. After the results of the chemical analysis of the concentrates, it is proved that the Sermatai area is considered as a potential source for some economic elements such as Fe, Ti, Zn, Zr, Cr, V, and Sr.