Exploitation
Moslem Jahantigh; Hamidreza Ramazi
Abstract
Various methods have been used for clustering big data. Pattern recognition methods are suitable methods for clustering these data. Due to the large volume of samples taken in the drilling of mines and their analysis for various elements, this category of geochemical data can be considered big data. ...
Read More
Various methods have been used for clustering big data. Pattern recognition methods are suitable methods for clustering these data. Due to the large volume of samples taken in the drilling of mines and their analysis for various elements, this category of geochemical data can be considered big data. Examining and evaluating drilling data in the Lar copper mine in Sistan and Baluchistan province located in the southeast of Iran requires the use of these methods. Therefore, the main goal of the article is the clustering of the drilling data in the mentioned mine and its zoning of the geochemical data. To achieve this goal, 3500 samples taken from drilling cores have been used. Elemental analysis for six elements has been done using the ICP-Ms method. Pattern recognition methods including SOM and K-MEANS have been used to evaluate the relation between these elements. The silhouette method has been used to determine and evaluate the number of clusters. Using this method, 4 clusters have been considered for the mentioned data. According to this method, it was found that the accuracy of clustering is higher in the SOM method. By considering the 4 clusters, 4 zones were identified using clustering methods. By comparing the results of the two methods and using the graphical method, it was determined that the SOM method has a better performance for clustering geochemical data in the studied area. Based on that, zones 2 and 4 were recognized as high-grade zones in this area.
Exploration
Moslem Jahantigh; Hamid Reza Ramazi
Abstract
Fuzzy c-means (FCM) is an unsupervised machine learning algorithm. This method assists in integrating airborne geophysics data and extracting automatic geological map. This paper tries to combine airborne geophysics data consisting of aeromagnetic, potassium, and thorium layers to classify the lithological ...
Read More
Fuzzy c-means (FCM) is an unsupervised machine learning algorithm. This method assists in integrating airborne geophysics data and extracting automatic geological map. This paper tries to combine airborne geophysics data consisting of aeromagnetic, potassium, and thorium layers to classify the lithological map of the Shahr-e-Babak area, a world-class porphyry area in the south of Iran. The resulting clusters with FCM show appropriate coincidence with the geological map of the study area. The clusters are adapted with high magnetic anomalies corresponding to the mafic volcanic rocks and the clusters with high radiometric signature associated with igneous rocks. The cluster is associated with low magnetic anomaly and low radioelements concentration representing sedimentary rocks. some clusters are associated with two or more lithological formations due to similar signatures of geophysics properties. The fuzzy score membership in all clusters is above 0.71 indicating a high correlation between geological signatures and multigeophysical data. This study shows geophysical signatures analyzed with the machine learning method can reveal geological units.
Exploration
Moslem Jahantigh; Hamid Reza Ramazi
Abstract
The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential ...
Read More
The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential layers include airborne magnetic data, airborne radiometric data (potassium and thorium), lineament density map, cu geochemistry signature, and multi-variate geochemistry signature (PC1). High magnetic anomalies, lineament structures, and alteration zones (K/Th) were derived from airborne geophysics data. Geochemistry signatures (Cu and PC1) were derived from stream sediment data. The principal Component Analysis (PCA) as an unsupervised machine learning method and five evidential layers were used to produce a porphyry prospectivity model. As a result of this combination, mineral prospectivity model was produced. Then a plot of cumulative percent of the studied area versus pca prospectivity value was used to discrete high potential areas. Then to evaluate the ability of this MPM, the location of known cu indications was used. The results confirm an acceptable outcome for porphyry prospectivity modeling. Based on this model high-potential areas are located in south southwestern and eastern parts of the studied area.
Sh. Maleki; H. R. Ramazi; M. J. Ameri Shahrabi
Abstract
Shear wave velocity (Vs) is considered as a key parameter in determination of the subsurface geomechanical properties in any hydrocarbon-bearing reservoir. During a well logging operation, the magnitude of Vs can be directly measured through the dipole shear sonic imager (DSI) logs. On a negative note, ...
Read More
Shear wave velocity (Vs) is considered as a key parameter in determination of the subsurface geomechanical properties in any hydrocarbon-bearing reservoir. During a well logging operation, the magnitude of Vs can be directly measured through the dipole shear sonic imager (DSI) logs. On a negative note, this method not only is limited to one dimensional (1D) interpretation, it also appears to be relatively costly. In this research work, the magnitude of Vs is calculated using one set of controversial petrophysical logs (compressional wave velocity) for an oil reservoir situated in the south part of Iran. To do this, initially, the pertinent empirical correlations between the compressional (Vp) and shear wave velocities are extracted for DSI logs. Then those empirical correlations are deployed in order to calculate the values of Vs within a series of thirty wells, in which their Vp values are already recorded. Afterwards, the Kriging estimator along with the Back Propagation Neural Network (BPNN) technique are utilized to calculate the values of Vs throughout the whole reservoir. Eventually, the results obtained from the two aforementioned techniques are compared with each other. Comparing those results, it turns out that the Kriging estimation technique presents more accurate values of Vs than the BPNN technique. Hence, the supremacy of the Kriging estimation technique over the BPNN technique must be regarded to achieve a further reliable magnitude of Vs in the subjected oil field. This application can also be considered in any other oil field with similar geomechanical and geological circumstances.
A. Yusefi; H. R. Ramazi
Abstract
This paper presents an innovative solution for estimating the proximate parameters of coal beds from the well-logs. To implement the solution, the C# programming language was used. The data from four exploratory boreholes was used in a case study to express the method and determine its accuracy. Then ...
Read More
This paper presents an innovative solution for estimating the proximate parameters of coal beds from the well-logs. To implement the solution, the C# programming language was used. The data from four exploratory boreholes was used in a case study to express the method and determine its accuracy. Then two boreholes were selected as the reference, namely the boreholes with available well-logging results and the proximate analysis data. The values of three well-logs were selected to be implemented in a system of equations that was solved, and the effect of each well-log on the estimated values of the proximate parameter was expressed as a coefficient called the effect factor. The coefficients were incorporated in an empirical relationship between the parameter and the three well-logs. To calculate the coefficients used for the most accurate estimation, a total of 22960 systems of equations were defined and solved for every three logs. As there was the possibility of 560 combinations for selecting three logs from all the available 16 logs, the three equation-three variable systems were solved more than 12 million times. The programming methods were utilized to achieve the final results. The results of each system were tested for deviation of the estimated values of volatile matter, ash, and moisture, and the coefficients of the lowest deviation were accepted to be applied in the relation. Implementing this method for estimating the volatile matter resulted in an average deviation of 10.5%. The corresponding estimated values of the ash and moisture contents were 22% and 14%, respectively.
Exploitation
K. Mostafaei; H. R. Ramazi
Abstract
Madan Bozorg is an active copper mine located in NE Iran, which is a part of the very wide copper mineralization zone named Miami-Sabzevar copper belt. The main goal of this research work is the 3D model construction of the induced polarization (IP) and resistivity (Rs) data with quantifying the uncertainties ...
Read More
Madan Bozorg is an active copper mine located in NE Iran, which is a part of the very wide copper mineralization zone named Miami-Sabzevar copper belt. The main goal of this research work is the 3D model construction of the induced polarization (IP) and resistivity (Rs) data with quantifying the uncertainties using geostatistical methods and drilling. Four profiles were designed and surveyed using the CRSP array based on the boreholes. The data obtained was processed, 2D sections of IP and Rs were prepared for each profile by inverting the data, and these sections were evaluated by some exploratory boreholes in the studied area. Based on the geostatistical methods, 3D block models were constructed for the 2D IP and Rs data, and the uncertainties in the prepared models were obtained. The mineralization location was determined according to the geophysical detected anomalies. In order to check the models, some locations were proposed for drilling in the cases that the borehole data was unavailable. The drilling results indicated a high correlation between the identified anomalies from the models and mineralization in the boreholes. The results obtained show that it is possible to construct 3D models from surveyed 2D IP & Rs data with an acceptable error level. In this way, the suggested omitted drilling locations were optimized so that more potentials could be obtained for copper exploration by the least number of boreholes.