Rock Mechanics
Amin Maleki; Hamid Chakeri; Hadi Shakeri; Erfan Khoshzaher; Mohammad Darbor
Abstract
Today, due to technological advancements and increasing demand, various types of Tunnel Boring Machines (TBM) are extensively used for tunneling in both soil and rock. The mechanical excavation method has become attractive in tunnel excavation and underground spaces due to its high safety, rapid progress ...
Read More
Today, due to technological advancements and increasing demand, various types of Tunnel Boring Machines (TBM) are extensively used for tunneling in both soil and rock. The mechanical excavation method has become attractive in tunnel excavation and underground spaces due to its high safety, rapid progress rate, low human labor requirement, and mechanization capability. The high capital costs of mechanical excavation make it essential to conduct laboratory tests, such as linear cutting tests on rocks, before selecting the machine type and adjusting the cutter head blade. The main objective of this study is to investigate the impact of rock mechanical properties on the cutting tool wear using a newly developed small-scale Linear Cutting Machine (LCM). To achieve this, laboratory linear cutting tests on rocks were conducted after constructing the small-scale linear cutting machine. To evaluate the rock cuttability and analyze the performance of disc cutters, 5 rock samples were used at three different penetration depths of 1, 1.5, and 2 mm. The results showed that the wear values of the cutting discs increased with penetration depth in all rock types, with the highest wear observed in basalt. Additionally, Brazilian tensile strength exhibited the highest correlation with cutting disc wear parameters. Furthermore, these studies indicated that determining the mineralogical and physical characteristics of rocks, such as texture, crystal size, and porosity, alongside their mechanical properties, is crucial for predicting rock wear.
Rock Mechanics
Faezeh Barri; Hamid Chakeri; Mohammad Darbor; Hamed Haghkish
Abstract
Excavation with Tunnel Boring Machine (TBM) in urban environments can have risks, such as ground surface settlement. The empty space between the cutterhead and the segment should be filled with suitable grout during the excavation. Nowadays, using grout behind the segment and other fillers fill the empty ...
Read More
Excavation with Tunnel Boring Machine (TBM) in urban environments can have risks, such as ground surface settlement. The empty space between the cutterhead and the segment should be filled with suitable grout during the excavation. Nowadays, using grout behind the segment and other fillers fill the empty space behind the segment and reduce the amount of ground surface settlement. Undoubtedly, using a grout with appropriate mechanical behavior can be a suitable substitute for excavated soil in mechanized tunneling. In this research, the mechanical behavior of the grout behind the segment during injection into the space between the soil and the segment and its mixture with the soil is studied. Also, the effect of mechanical properties of grout mixed with soil on the ground surface settlement is investigated using numerical modeling. The components of two-component grout of this study comprises Sufian type 2 cement with 28-day strength of 44 MPa and density of 3050 kg/m3, Salafchegan bentonite with density of 2132 kg/m3 and precipitator of liquid sodium silicate with density of the solution 1500 kg/m3. The results of the laboratory studies indicated that mixing the grout and soil increases the mechanical properties of grout significantly. Increasing the soil in the mixture of soil and grout up to 40% increases the uniaxial compressive strength up to 300%, the elasticity of modulus up to 156% and the cohesion of the mixture up to 100%. On the other hand, based on the results of numerical modeling, the proper injection pressure can significantly reduce the ground surface settlement. Increasing the injection pressure from 0 to 120 kPa has a 17% influence on the reduction of ground surface settlement.
Rock Mechanics
Taha Ansari; Hamid Chakeri; Mohammad Darbor; sadegh Amoun; Hadi Shakeri
Abstract
There is no acceptable method for investigating the tool wear phenomenon in soft grounds. In this article, first, a new equipment made at Sahand University of Technology is introduced, which is used for simulation of TBM tunneling mechanism. Next, the effect of various soil grading parameters such as ...
Read More
There is no acceptable method for investigating the tool wear phenomenon in soft grounds. In this article, first, a new equipment made at Sahand University of Technology is introduced, which is used for simulation of TBM tunneling mechanism. Next, the effect of various soil grading parameters such as D10, D30, and D60 (which indicate the corresponding diameters on the soil grading diagram where 10, 30, and 60% of the grains are smaller than these values, respectively), coefficient of gradation, uniformity coefficient, sorting coefficient and effective size on the cutting tools wear. The initial studies show that in soils with fine grains greater than 10%, by increase in the values of D10, D30, D60, and effective size, the tool wear increases. However, in soils with fine grains less than 10%, by increase in the above-mentioned parameters, the soil abrasiveness reduces. Also in soils with more than 10% fine grains, by increase in the coefficient of gradation value, the soil abrasiveness reduces. But in soils with fine grains less than 10%, by increase in the value of this parameter, the tool wear increases. The results of experiments show that sorting coefficient could be a good criterion for investigating the soil abrasiveness.