Volume 16 (2025)
Volume 15 (2024)
Volume 14 (2023)
Volume 13 (2022)
Volume 12 (2021)
Volume 11 (2020)
Volume 10 (2019)
Volume 9 (2018)
Volume 8 (2017)
Volume 7 (2016)
Volume 6 (2015)
Volume 5 (2014)
Volume 4 (2013)
Volume 3 (2012)
Volume 2 (2011)
Volume 1 (2010)
Exploration
Estimation of ore grades using Archimedean copulas in a copper deposit in Peru

Marco Antonio Cotrina-Teatino; Jairo Jhonatan Marquina-Araujo; Jose Nestor Mamani-Quispe; Solio Marino Arango-Retamozo; Joe Alexis Gonzalez-Vasquez

Articles in Press, Accepted Manuscript, Available Online from 06 September 2025

https://doi.org/10.22044/jme.2025.16188.3127

Abstract
  Traditional geostatistical methods such as kriging exhibit limitations by assuming linear and symmetric dependencies, which can lead to smoothed estimates and the loss of local variability. To address these issues, this study applies Archimedean copulas (Clayton, Gumbel, and Frank) for the estimation ...  Read More

Exploration
An innovative approach to mineral resource classification based on Riemannian clustering and machine learning in a copper deposit

Marco Antonio Cotrina Teatino; Jairo Jhonatan Marquina-Araujo; Jose Nestor Mamani-Quispe; Solio Marino Arango-Retamozo; Joe Alexis Gonzalez-Vasquez; Kevin Daniel Rondo-Jalca

Articles in Press, Accepted Manuscript, Available Online from 06 September 2025

https://doi.org/10.22044/jme.2025.16320.3174

Abstract
  The classification of mineral resources significantly impacts mine planning, economic feasibility, and regulatory compliance. Despite its importance, such classification frequently depends on the subjective judgment of the Qualified Person (QP), owing to the absence of internationally standardized technical ...  Read More

Exploration
Comparison of unsupervised multivariate clustering methods for the geochemical and geospatial characterization of mining tailings

Marco Antonio Cotrina Teatino; Jairo Jhonatan Marquina-Araujo; Jose Nestor Mamani-Quispe; Solio Marino Arango-Retamozo; Joe Alexis Gonzalez-Vasquez

Articles in Press, Accepted Manuscript, Available Online from 04 October 2025

https://doi.org/10.22044/jme.2025.16568.3239

Abstract
  The geochemical and spatial characterization of legacy mine tailings is essential for identifying reprocessing opportunities and informing environmental management. However, the high compositional complexity of polymetallic tailings requires robust multivariate approaches. This study evaluates and compares ...  Read More

Exploitation
Optimization of Fragmentation and Operational Costs of Drilling and Blasting using Hybrid Machine Learning Models in an Open-Pit Mine in Peru

Marco Antonio Cotrina Teatino; Jairo Jhonatan Marquina Araujo; Jose Nestor Mamani Quispe; Solio Marino Arango-Retamozo; Johnny Henrry Ccatamayo-Barrios; Joe Alexis Gonzalez-Vasquez; Teofilo Donaires-Flores; Maxgabriel Alexis Calla-Huayapa

Volume 16, Issue 4 , July and August 2025, , Pages 1195-1219

https://doi.org/10.22044/jme.2025.15049.2873

Abstract
  Mining plays a crucial role in the economy of many countries, contributing significantly to GDP, employment, and industrial development. However, optimizing drilling and blasting operations remains a key challenge in open-pit mining due to its direct impact on operational costs and rock fragmentation ...  Read More

Exploration
Categorization of Mineral Resources using Random Forest Model in a Copper Deposit in Peru

Marco Antonio Cotrina-Teatino; Jairo Jhonatan Marquina-Araujo; Jose Nestor Mamani-Quispe; Solio Marino Arango-Retamozo; Johnny Henrry Ccatamayo-Barrios; Joe Alexis Gonzalez-Vasquez; Teofilo Donaires-Flores; Maxgabriel Alexis Calla-Huayapa

Volume 16, Issue 3 , May and June 2025, , Pages 947-962

https://doi.org/10.22044/jme.2025.15568.2984

Abstract
  This work aimed to categorize mineral resources in a copper deposit in Peru, using a machine learning model, integrating the K-prototypes clustering algorithm for initial classification and Random Forest (RF) as a spatial smoother. A total of 318,443 blocks were classified using geostatistical and geometric ...  Read More

Exploitation
Predicting Open Pit Mine Production using Machine Learning Techniques: A Case Study in Peru

Marco Antonio Cotrina Teatino; Jairo Jhonatan Marquina Araujo; Eduardo Manuel Noriega Vidal; Jose Nestor Mamani Quispe; Johnny Henrry Ccatamayo Barrios; Joe Alexis Gonzalez Vasquez; Solio Marino Arango Retamozo

Volume 15, Issue 4 , October 2024, , Pages 1345-1355

https://doi.org/10.22044/jme.2024.14416.2703

Abstract
  The primary objective of this research was to apply machine learning techniques to predict the production of an open pit mine in Peru. Four advanced techniques were employed: Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (RB). The methodology ...  Read More