M. P. Sadr; M. Nazeri
Abstract
The Dolatabad area located in SE Iran is a well-endowed terrain owning several chromite mineralized zones. These chromite ore bodies are all hosted in a colored mélange complex zone comprising harzburgite, dunite, and pyroxenite. These deposits are irregular in shape, and are distributed as small ...
Read More
The Dolatabad area located in SE Iran is a well-endowed terrain owning several chromite mineralized zones. These chromite ore bodies are all hosted in a colored mélange complex zone comprising harzburgite, dunite, and pyroxenite. These deposits are irregular in shape, and are distributed as small lenses along colored mélange zones. The area has a great potential for discovering further chromite resources. Therefore, the current work endeavors to delineate the favorable zones of podiform chromite mineralization to focus on the detailed exploration surveys. In order to achieve this goal, the machine learning random forests algorithm was adapted to integrate the footprints of mineralization in various exploration datasets. The genetic characteristics of podiform chromite deposits were used to define the exploration criteria. These defined criteria were then translated to a set of exploration evidence layers. The competent exploration evidence layers, i.e. those with remarkable positive spatial associations with mineralization, were then recognized using distance distribution analysis. Respecting the location of known chromite mineralizations and competent exploration evidence layers, a predictive random forests model was trained and then applied to predict the favorable zones of chromite prospectivity. The delineated targets were found to occupy 19% of the studied area, in which all the known chromite mineralizations were delimited. Consequently, it is worthy to follow up the detailed exploration surveys within the delineated zones.
Exploitation
S. Saadat
Abstract
Motivated by the recent successful results of using GIS modeling in a variety of problems related to the geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral ...
Read More
Motivated by the recent successful results of using GIS modeling in a variety of problems related to the geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral Prospectivity Mapping (MPM) is a multi-step process that ranks a promising target area for more exploration. In this work, five integration methods were compared consisting of fuzzy, continuous fuzzy, index overlay, AHP, and fuzzy AHP. For this purpose, geological maps, geochemical samples, and geophysics data were collected, and a spatial database was constructed. ETM + images were used to extract the hydroxyl and iron-oxide alterations, and to identify the linear and fault structures and prospective zones in regional scale; ASTER images were used to extract SiO2 index, kaolinite, chlorite, and propylitic alterations in a district scale. All the geological, geochemical, and geophysical data was integrated for MPM by different analysis. The values were determined by expert knowledge or logistic functions. Based upon this analysis, three main exploration targets were recognized in the Feyz-Abad district. Based on field observation, MPM was proved to be valid. The prediction result is accurate, and can provide directions for future prospecting. Among all the methods evaluated in this work, which tend to generate relatively similar results, the continuous fuzzy model seems to be the best fit in the studied area because it is bias-free and can be used to generate reliable target areas.