Exploration
Kamran Mostafaei; Mohammad Nabi Kianpour; Mahyar Yousefi; Meisam Saleki
Abstract
Discrimination of geochemical anomalies from background is a challenge in that elemental dispersion patterns are affected by a variety of geological factors, which vary from one to another area. While statistical and fractal methods are commonly employed for anomaly detection, they struggle with selecting ...
Read More
Discrimination of geochemical anomalies from background is a challenge in that elemental dispersion patterns are affected by a variety of geological factors, which vary from one to another area. While statistical and fractal methods are commonly employed for anomaly detection, they struggle with selecting optimal thresholds. This study proposes the Grey Wolf Optimizer (GWO) algorithm as a novel approach for identifying the optimal boundary between anomalies and background. Stream sediment geochemical data from a copper-mineralized area of the Sarduiyeh-Baft sheets in southeast Iran were utilized for analysis. The Geochemical Mineralization Probability Index (GMPI) was first calculated for Cu-Au, Mo-As, Pb-Zn, and porphyry distributions. Subsequently, fractal methods were used to identify anomalous populations within each GMPI. The GWO algorithm was then applied to these distributions to determine the optimal thresholds. Risk analysis, calculated as the ratio of covered copper occurrences to the covered area, revealed superior reliability for the GWO-derived limit compared to those obtained using fractal methods. For porphyry GMPI values, while the fractal reliability indices are 0.127, 0.44, and 0.5, the GWO limit achieved a value of 0.66. Risk analysis for Cu-Au distribution also caused more desired result for GWO limit rather that fractal ones. This demonstrates the enhanced performance and superior reliability of the GWO algorithm for optimizing anomaly detection thresholds in GMPI data.
Environment
H. Mahdiyanfar
Abstract
Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate ...
Read More
Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli mineral deposit is located on the volcanic–plutonic belt of Sahand–Bazman in the central part of Iran. The geochemical data was transformed to the frequency domain using the Fourier transformation, and SAFA was applied for classification of geochemical frequencies and detection of geochemical populations. The very low-frequency signals in the fractal method were separated using the low-pass filter function and were interpreted using PCA. This scenario demonstrates that the Mo element has an important role in the mineralization phase in the very low-frequency signals that are related to the deep mineralization; it is an important innovation in this work. Then the Mo geochemical anomaly has been mapped using the inverse Fourier transformation. This research work shows that the high-power spectrum values in SAFA are related to the background elements and the deep mineralization. Two exploratory boreholes drilled inside and outside the deep Mo anomaly area properly confirm the results of the proposed approach.
Environment
B. Shokouh Saljoughi; A. Hezarkhani; E. Farahbakhsh
Abstract
The most significant aspect of a geochemical exploration program is to define and separate the anomalous values from the background. In the past decades, geochemical anomalies have been identified by means of various methods. Most of the conventional statistical methods aiming at defining the geochemical ...
Read More
The most significant aspect of a geochemical exploration program is to define and separate the anomalous values from the background. In the past decades, geochemical anomalies have been identified by means of various methods. Most of the conventional statistical methods aiming at defining the geochemical concentration thresholds for separating anomalies from the background have limited the efficiency in the areas with complex geological settings. In this work, three methods including the Concentration-Area (C-A) and Spectrum-Area (S-A) fractal models, and the U-statistic method are applied to identify the geochemical anomalies in Avanj porphyry system due to a complex geological and tectonic setting. The results obtained show that the S-A and U-statistic methods present more acceptable outputs than the C-A method. The C-A model acts well to identify the geochemical anomalies within a region including a simple geochemical background; however, the model has limitations within a region including a complex geological setting, where each sub-area is characterized by different geochemical fields. The U-statistic method, by considering the location of sampling points, their spatial relation, and radius of influence for each point in the estimation of anomaly location, overcomes the limitations of the C-A model. The S-A model is a powerful tool to decompose mixed geochemical patterns into a geochemical anomaly map and a varied geochemical background map. The output of this method shows the analysis of geochemical data in the frequency domain, which can provide new exploratory information that may not be revealed in the spatial domain. Eventually, it can be pointed out that the accuracy of the S-A fractal model for determining the thresholds is higher than the other two methods mentioned.